Comparison of the ruminal and fecal microbiotas in beef calves supplemented or not with concentrate

Most of the research efforts involving the bovine gastrointestinal microbiota have focused on cattle's forestomach, particularly the rumen, so information concerning the bovine fecal microbiota is more scarce, especially in young beef cattle. The present study was performed to evaluate the rumi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-04, Vol.15 (4), p.e0231533
Hauptverfasser: Lourenco, Jeferson M, Kieran, Troy J, Seidel, Darren S, Glenn, Travis C, Silveira, Magali F da, Callaway, Todd R, Stewart, Jr, R Lawton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most of the research efforts involving the bovine gastrointestinal microbiota have focused on cattle's forestomach, particularly the rumen, so information concerning the bovine fecal microbiota is more scarce, especially in young beef cattle. The present study was performed to evaluate the ruminal and fecal microbiotas of beef calves as they reached the end of their nursing phase. A total of 18 Angus cow/calf pairs were selected and assigned to one of two treatment groups for the last 92 days of the calves' nursing period, as follows: 1) calves were supplemented with concentrate in a creep feeding system; or 2) control group with no supplementation of calves. After 92 days, ruminal and fecal samples were individually obtained from calves in both groups, and their microbiotas were evaluated using 16S rRNA gene sequencing. Ruminal samples were predominated by Prevotella (18 to 23% of the total bacterial abundance), regardless if calves received supplementation or not; however, in the feces, Prevotella was only the seventh most abundant genus (0.6 to 2.1% of total bacterial abundance). Both the rumen (P = 0.01) and the feces (P = 0.05) of calves that received supplementation had greater abundance of Firmicutes. In addition, calves that were supplemented had lower abundance of Fibrobacteres (P = 0.03) in their rumens. Regardless if the calves were supplemented or not, Faith's Phylogenetic Diversity index (P ≤ 0.007) and total concentration of short chain fatty acids (P < 0.001) were both greater in the rumen than in the feces of calves. In summary, the ruminal and fecal microbiotas of weanling beef calves were considerably distinct. Additionally, supplementation with creep feed caused some significant changes in the composition of the gastrointestinal microbiota of the calves, especially in the rumen, where supplementation caused an increase in Firmicutes and a decrease in abundance of Fibrobacteres.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0231533