High-speed automatic characterization of rare events in flow cytometric data

A new computational framework for FLow cytometric Analysis of Rare Events (FLARE) has been developed specifically for fast and automatic identification of rare cell populations in very large samples generated by platforms like multi-parametric flow cytometry. Using a hierarchical Bayesian model and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-02, Vol.15 (2), p.e0228651-e0228651
Hauptverfasser: Qi, Yuan, Fang, Youhan, Sinclair, David R, Guo, Shangqin, Alberich-Jorda, Meritxell, Lu, Jun, Tenen, Daniel G, Kharas, Michael G, Pyne, Saumyadipta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new computational framework for FLow cytometric Analysis of Rare Events (FLARE) has been developed specifically for fast and automatic identification of rare cell populations in very large samples generated by platforms like multi-parametric flow cytometry. Using a hierarchical Bayesian model and information-sharing via parallel computation, FLARE rapidly explores the high-dimensional marker-space to detect highly rare populations that are consistent across multiple samples. Further it can focus within specified regions of interest in marker-space to detect subpopulations with desired precision.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0228651