Spatio-temporal variation of Cerambycidae-host tree interaction networks

Despite its high ecological importance, the commensal interactions at community level are poorly studied. In tropical dry forests (TDF) there is a great diversity of species adapted to the high seasonality that characterizes them; however, little is known regarding how the spatial and temporal avail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-02, Vol.15 (2), p.e0228880-e0228880
Hauptverfasser: Ramos-Robles, Michelle, Vargas-Cardoso, Orthon Ricardo, Corona-López, Angélica María, Flores-Palacios, Alejandro, Toledo-Hernández, Víctor Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite its high ecological importance, the commensal interactions at community level are poorly studied. In tropical dry forests (TDF) there is a great diversity of species adapted to the high seasonality that characterizes them; however, little is known regarding how the spatial and temporal availability of resources generates changes in the pattern of commensal interactions. We experimentally studied changes in the diversity, composition, and pattern of interactions in spatio-temporal associations between the saproxylophagous beetles and their host trees in a TDF in Morelos, Mexico. A total of 65 host tree species were selected, from which 16 wood sections were obtained per species. These sections were exposed in the field to allow oviposition by the cerambycids under four different (spatio-temporal) treatments. We analyzed the network structure and generated indices at species level (i.e., specialization, species strength, and effective partners) and those related to physical characteristics of the wood (hardness and degradation rate) and the cerambycids (body size). In total, 1,323 individuals of 57 species of cerambycids emerged. Our results showed that, independently of the space and time, the network presented a nested and modular structure, with a high specialization degree and a high turnover of cerambycid species and their interactions. In general, we found that the cerambycids are mostly associated with softwood species with a lower decomposition rate of wood, as well as with the most abundant host species. The commensalistic interactions between the cerambycids and their host trees are highly specialized but are not spatio-temporally static. The high turnover in the interactions is caused by the emergence patterns of cerambycids, which seem to restrict their use to certain species. The knowledge of the spatio-temporal variation in Cerambycidae-host tree interactions allows us to predict how environmental and structural changes in the habitat can modify the species ensemble, and therefore its interactions.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0228880