Hypercaloric diet models do not develop heart failure, but the excess sucrose promotes contractility dysfunction

Several diseases are associated with excess of adipose tissue, and obesity is considered an independent risk factor for the development of cardiac remodeling and heart failure. Dietary aspects have been studied to elucidate the mechanisms involved in these processes. Thus, the purpose was the develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-02, Vol.15 (2), p.e0228860
Hauptverfasser: Martins Matias, Amanda, Murucci Coelho, Priscila, Bermond Marques, Vinícius, Dos Santos, Leonardo, Monteiro de Assis, Aricia Leone Evangelista, Valentim Nogueira, Breno, Lima-Leopoldo, Ana Paula, Soares Leopoldo, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several diseases are associated with excess of adipose tissue, and obesity is considered an independent risk factor for the development of cardiac remodeling and heart failure. Dietary aspects have been studied to elucidate the mechanisms involved in these processes. Thus, the purpose was the development and characterization of an obesity experimental model from hypercaloric diets, which resulted in cardiac remodeling and predisposition to heart failure. Thirty- day-old male Wistar rats (n = 52) were randomized into four groups: control (C), high sucrose (HS), high-fat (HF) and high-fat and sucrose (HFHS) for 20 weeks. General characteristics, comorbidities, weights of the heart, left (LV) and right ventricles, atrium, and relationships with the tibia length were evaluated. The LV myocyte cross sectional area and fraction of interstitial collagen were assayed. Cardiac function was determined by hemodynamic analysis and the contractility by cardiomyocyte contractile function. Heart failure was analyzed by pulmonary congestion, right ventricular hypertrophy, and hemodynamic parameters. HF and HFHS models led to obesity by increase in adiposity index (C = 8.3 ± 0.2% vs. HF = 10.9 ± 0.5%, HFHS = 10.2 ± 0.3%). There was no change in the morphological parameters and heart failure signals. HF and HFHS caused a reduction in times to 50% relaxation without cardiomyocyte contractile damage. The HS model presented cardiomyocyte contractile dysfunction visualized by lower shortening (C: 8.34 ± 0.32% vs. HS: 6.91 ± 0.28), as well as the Ca2+ transient amplitude was also increased when compared to HFHS. In conclusion, the experimental diets based on high amounts of sugar, lard or a combination of both did not promote cardiac remodeling with predisposition to heart failure under conditions of obesity or excess sucrose. Nevertheless, excess sucrose causes cardiomyocyte contractility dysfunction associated with alterations in the myocyte sensitivity to intracellular Ca2+.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0228860