Acute high-intensity and moderate-intensity interval exercise do not change corticospinal excitability in low fit, young adults

Previous research has demonstrated a lack of neuroplasticity induced by acute exercise in low fit individuals, but the influence of exercise intensity is unclear. In the present study, we assessed the effect of acute high-intensity (HI) or moderate-intensity (MOD) interval exercise on neuroplasticit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-01, Vol.15 (1), p.e0227581-e0227581
Hauptverfasser: El-Sayes, Jenin, Turco, Claudia V, Skelly, Lauren E, Locke, Mitchell B, Gibala, Martin J, Nelson, Aimee J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous research has demonstrated a lack of neuroplasticity induced by acute exercise in low fit individuals, but the influence of exercise intensity is unclear. In the present study, we assessed the effect of acute high-intensity (HI) or moderate-intensity (MOD) interval exercise on neuroplasticity in individuals with low fitness, as determined by a peak oxygen uptake (VO2peak) test (n = 19). Transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability via area under the motor evoked potential (MEP) recruitment curve before and following training. Corticospinal excitability was unchanged after HI and MOD, suggesting no effect of acute exercise on neuroplasticity as measured via TMS in sedentary, young individuals. Repeated bouts of exercise, i.e., physical training, may be required to induce short-term changes in corticospinal excitability in previously sedentary individuals.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0227581