Novel MscL agonists that allow multiple antibiotics cytoplasmic access activate the channel through a common binding site

The antibiotic resistance crisis is becoming dire, yet in the past several years few potential antibiotics or adjuvants with novel modes of action have been identified. The bacterial mechanosensitive channel of large conductance, MscL, found in the majority of bacterial species, including pathogens,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-01, Vol.15 (1), p.e0228153-e0228153
Hauptverfasser: Wray, Robin, Wang, Junmei, Iscla, Irene, Blount, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The antibiotic resistance crisis is becoming dire, yet in the past several years few potential antibiotics or adjuvants with novel modes of action have been identified. The bacterial mechanosensitive channel of large conductance, MscL, found in the majority of bacterial species, including pathogens, normally functions as an emergency release valve, sensing membrane tension upon low-osmotic stress and discharging cytoplasmic solutes before cell lysis. Opening the huge ~30Å diameter pore of MscL inappropriately is detrimental to the cell, allowing solutes from and even passage of drugs into to cytoplasm. Thus, MscL is a potential novel drug target. However, there are no known natural agonists, and small compounds that modulate MscL activity are just now being identified. Here we describe a small compound, K05, that specifically modulates MscL activity and we compare results with those obtained for the recently characterized MscL agonist 011A. While the structure of K05 only vaguely resembles 011A, many of the findings, including the binding pocket, are similar. On the other hand, both in vivo and molecular dynamic simulations indicate that the two compounds modulate MscL activity in significantly different ways.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0228153