A strategy to identify protein-N-myristoylation-dependent phosphorylation reactions of cellular proteins by using Phos-tag SDS-PAGE
To establish a strategy for identifying protein-N-myristoylation-dependent phosphorylation of cellular proteins, Phos-tag SDS-PAGE was performed on wild-type (WT) and nonmyristoylated mutant (G2A-mutant) FMNL2 and FMNL3, phosphorylated N-myristoylated model proteins expressed in HEK293 cells. The di...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-11, Vol.14 (11), p.e0225510-e0225510 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To establish a strategy for identifying protein-N-myristoylation-dependent phosphorylation of cellular proteins, Phos-tag SDS-PAGE was performed on wild-type (WT) and nonmyristoylated mutant (G2A-mutant) FMNL2 and FMNL3, phosphorylated N-myristoylated model proteins expressed in HEK293 cells. The difference in the banding pattern in Phos-tag SDS-PAGE between the WT and G2A-mutant FMNL2 indicated the presence of N-myristoylation-dependent phosphorylation sites in FMNL2. Phos-tag SDS-PAGE of FMNL2 mutants in which the putative phosphorylation sites listed in PhosphoSitePlus (an online database of phosphorylation sites) were changed to Ala revealed that Ser-171 and Ser-1072 are N-myristoylation-dependent phosphorylation sites in FMNL2. Similar experiments with FMNL3 demonstrated that N-myristoylation-dependent phosphorylation occurs at a single Ser residue at position 174, which is a Ser residue conserved between FMNL2 and FMNL3, corresponding to Ser-171 in FMNL2. The facts that phosphorylation of Ser-1072 in FMNL2 has been shown to play a critical role in integrin β1 internalization mediated by FMNL2 and that Ser-171 in FMNL2 and Ser-174 in FMNL3 are novel putative phosphorylation sites conserved between FMNL2 and FMNL3 indicate that the strategy used in this study is a useful tool for identifying and characterizing physiologically important phosphorylation reactions occurring on N-myristoylated proteins. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0225510 |