Estimating information in time-varying signals
Across diverse biological systems-ranging from neural networks to intracellular signaling and genetic regulatory networks-the information about changes in the environment is frequently encoded in the full temporal dynamics of the network nodes. A pressing data-analysis challenge has thus been to eff...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2019-09, Vol.15 (9), p.e1007290-33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Across diverse biological systems-ranging from neural networks to intracellular signaling and genetic regulatory networks-the information about changes in the environment is frequently encoded in the full temporal dynamics of the network nodes. A pressing data-analysis challenge has thus been to efficiently estimate the amount of information that these dynamics convey from experimental data. Here we develop and evaluate decoding-based estimation methods to lower bound the mutual information about a finite set of inputs, encoded in single-cell high-dimensional time series data. For biological reaction networks governed by the chemical Master equation, we derive model-based information approximations and analytical upper bounds, against which we benchmark our proposed model-free decoding estimators. In contrast to the frequently-used k-nearest-neighbor estimator, decoding-based estimators robustly extract a large fraction of the available information from high-dimensional trajectories with a realistic number of data samples. We apply these estimators to previously published data on Erk and Ca2+ signaling in mammalian cells and to yeast stress-response, and find that substantial amount of information about environmental state can be encoded by non-trivial response statistics even in stationary signals. We argue that these single-cell, decoding-based information estimates, rather than the commonly-used tests for significant differences between selected population response statistics, provide a proper and unbiased measure for the performance of biological signaling networks. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1007290 |