β-glucan-dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment
The initial host response to fungal pathogen invasion is critical to infection establishment and outcome. However, the diversity of leukocyte-pathogen interactions is only recently being appreciated. We describe a new form of interleukocyte conidial exchange called "shuttling." In Talaromy...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2019-09, Vol.17 (9), p.e3000113-e3000113 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The initial host response to fungal pathogen invasion is critical to infection establishment and outcome. However, the diversity of leukocyte-pathogen interactions is only recently being appreciated. We describe a new form of interleukocyte conidial exchange called "shuttling." In Talaromyces marneffei and Aspergillus fumigatus zebrafish in vivo infections, live imaging demonstrated conidia initially phagocytosed by neutrophils were transferred to macrophages. Shuttling is unidirectional, not a chance event, and involves alterations of phagocyte mobility, intercellular tethering, and phagosome transfer. Shuttling kinetics were fungal-species-specific, implicating a fungal determinant. β-glucan serves as a fungal-derived signal sufficient for shuttling. Murine phagocytes also shuttled in vitro. The impact of shuttling for microbiological outcomes of in vivo infections is difficult to specifically assess experimentally, but for these two pathogens, shuttling augments initial conidial redistribution away from fungicidal neutrophils into the favorable macrophage intracellular niche. Shuttling is a frequent host-pathogen interaction contributing to fungal infection establishment patterns. |
---|---|
ISSN: | 1545-7885 1544-9173 1545-7885 |
DOI: | 10.1371/journal.pbio.3000113 |