Enhancing timeliness of drug overdose mortality surveillance: A machine learning approach

Timely data is key to effective public health responses to epidemics. Drug overdose deaths are identified in surveillance systems through ICD-10 codes present on death certificates. ICD-10 coding takes time, but free-text information is available on death certificates prior to ICD-10 coding. The obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-10, Vol.14 (10), p.e0223318
Hauptverfasser: Ward, Patrick J, Rock, Peter J, Slavova, Svetla, Young, April M, Bunn, Terry L, Kavuluru, Ramakanth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Timely data is key to effective public health responses to epidemics. Drug overdose deaths are identified in surveillance systems through ICD-10 codes present on death certificates. ICD-10 coding takes time, but free-text information is available on death certificates prior to ICD-10 coding. The objective of this study was to develop a machine learning method to classify free-text death certificates as drug overdoses to provide faster drug overdose mortality surveillance. Using 2017-2018 Kentucky death certificate data, free-text fields were tokenized and features were created from these tokens using natural language processing (NLP). Word, bigram, and trigram features were created as well as features indicating the part-of-speech of each word. These features were then used to train machine learning classifiers on 2017 data. The resulting models were tested on 2018 Kentucky data and compared to a simple rule-based classification approach. Documented code for this method is available for reuse and extensions: https://github.com/pjward5656/dcnlp. The top scoring machine learning model achieved 0.96 positive predictive value (PPV) and 0.98 sensitivity for an F-score of 0.97 in identification of fatal drug overdoses on test data. This machine learning model achieved significantly higher performance for sensitivity (p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0223318