On the use of Action Units and fuzzy explanatory models for facial expression recognition

Facial expression recognition is related to the automatic identification of affective states of a subject by computational means. Facial expression recognition is used for many applications, such as security, human-computer interaction, driver safety, and health care. Although many works aim to tack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-10, Vol.14 (10), p.e0223563-e0223563
Hauptverfasser: Morales-Vargas, E, Reyes-García, C A, Peregrina-Barreto, Hayde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Facial expression recognition is related to the automatic identification of affective states of a subject by computational means. Facial expression recognition is used for many applications, such as security, human-computer interaction, driver safety, and health care. Although many works aim to tackle the problem of facial expression recognition, and the discriminative power may be acceptable, current solutions have limited explicative power, which is insufficient for certain applications, such as facial rehabilitation. Our aim is to alleviate the current limited explicative power by exploiting explainable fuzzy models over sequences of frontal face images. The proposed model uses appearance features to describe facial expressions in terms of facial movements, giving a detailed explanation of what movements are in the face, and why the model is making a decision. The model architecture was selected to keep the semantic meaning of the found facial movements. The proposed model can discriminate between the seven basic facial expressions, obtaining an average accuracy of 90.8±14%, with a maximum value of 92.9±28%.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0223563