Plasma metabolite biomarkers for multiple system atrophy and progressive supranuclear palsy

Radiological biomarkers have been reported for multiple system atrophy and progressive supranuclear palsy, but serum/plasma biomarkers for each disorder have not been established. In this context, we performed a pilot study to identify disease-specific plasma biomarkers for multiple system atrophy a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-09, Vol.14 (9), p.e0223113-e0223113
Hauptverfasser: Mori, Akio, Ishikawa, Kei-Ichi, Saiki, Shinji, Hatano, Taku, Oji, Yutaka, Okuzumi, Ayami, Fujimaki, Motoki, Koinuma, Takahiro, Ueno, Shin-Ichi, Imamichi, Yoko, Hattori, Nobutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiological biomarkers have been reported for multiple system atrophy and progressive supranuclear palsy, but serum/plasma biomarkers for each disorder have not been established. In this context, we performed a pilot study to identify disease-specific plasma biomarkers for multiple system atrophy and progressive supranuclear palsy. Plasma samples collected from 20 progressive supranuclear palsy patients, 16 multiple system atrophy patients and 20 controls were investigated by comprehensive metabolome analysis using capillary electrophoresis mass spectrometry and liquid chromatography mass spectrometry. Medication data were obtained from patients with multiple system atrophy and progressive supranuclear palsy, and correlations with associated metabolites were examined. Receiver operating characteristics curve analyses were used to investigate diagnostic values for each disorder. The levels of 15 and eight metabolites were significantly changed in multiple system atrophy and progressive supranuclear palsy, respectively. Multiple system atrophy was mainly characterized by elevation of long-chain fatty acids and neurosteroids, whereas progressive supranuclear palsy was characterized by changes in the level of oxidative stress-associated metabolites. Receiver operating characteristic curve analyses revealed that patients with multiple system atrophy or progressive supranuclear palsy were effectively differentiated from controls by 15 or 7 metabolites, respectively. Disease-specific metabolic changes of multiple system atrophy and progressive supranuclear palsy were identified. These biomarker sets should be replicated in a larger sample.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0223113