Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation
NODDI is widely used in parameterizing microstructural brain properties. The model includes three signal compartments: intracellular, extracellular, and free water. The neurite compartment intrinsic parallel diffusivity (d∥) is set to 1.7 μm2⋅ms-1, though the effects of this assumption have not been...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-09, Vol.14 (9), p.e0217118-e0217118 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NODDI is widely used in parameterizing microstructural brain properties. The model includes three signal compartments: intracellular, extracellular, and free water. The neurite compartment intrinsic parallel diffusivity (d∥) is set to 1.7 μm2⋅ms-1, though the effects of this assumption have not been extensively explored. This work investigates the optimality of d∥ = 1.7 μm2⋅ms-1 under varying imaging protocol, age groups, sex, and tissue type in comparison to other biologically plausible values of d∥.
Model residuals were used as the optimality criterion. The model residuals were evaluated in function of d∥ over the range from 0.5 to 3.0 μm2⋅ms-1. This was done with respect to tissue type (i.e., white matter versus gray matter), sex, age (infancy to late adulthood), and diffusion-weighting protocol (maximum b-value). Variation in the estimated parameters with respect to d∥ was also explored.
Results show d∥ = 1.7 μm2⋅ms-1 is appropriate for adult brain white matter but it is suboptimal for gray matter with optimal values being significantly lower. d∥ = 1.7 μm2⋅ms-1 was also suboptimal in the infant brain for both white and gray matter with optimal values being significantly lower. Minor optimum d∥ differences were observed versus diffusion protocol. No significant sex effects were observed. Additionally, changes in d∥ resulted in significant changes to the estimated NODDI parameters.
The default (d∥) of 1.7 μm2⋅ms-1 is suboptimal in gray matter and infant brains. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0217118 |