Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation

NODDI is widely used in parameterizing microstructural brain properties. The model includes three signal compartments: intracellular, extracellular, and free water. The neurite compartment intrinsic parallel diffusivity (d∥) is set to 1.7 μm2⋅ms-1, though the effects of this assumption have not been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-09, Vol.14 (9), p.e0217118-e0217118
Hauptverfasser: Guerrero, Jose M, Adluru, Nagesh, Bendlin, Barbara B, Goldsmith, H Hill, Schaefer, Stacey M, Davidson, Richard J, Kecskemeti, Steven R, Zhang, Hui, Alexander, Andrew L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NODDI is widely used in parameterizing microstructural brain properties. The model includes three signal compartments: intracellular, extracellular, and free water. The neurite compartment intrinsic parallel diffusivity (d∥) is set to 1.7 μm2⋅ms-1, though the effects of this assumption have not been extensively explored. This work investigates the optimality of d∥ = 1.7 μm2⋅ms-1 under varying imaging protocol, age groups, sex, and tissue type in comparison to other biologically plausible values of d∥. Model residuals were used as the optimality criterion. The model residuals were evaluated in function of d∥ over the range from 0.5 to 3.0 μm2⋅ms-1. This was done with respect to tissue type (i.e., white matter versus gray matter), sex, age (infancy to late adulthood), and diffusion-weighting protocol (maximum b-value). Variation in the estimated parameters with respect to d∥ was also explored. Results show d∥ = 1.7 μm2⋅ms-1 is appropriate for adult brain white matter but it is suboptimal for gray matter with optimal values being significantly lower. d∥ = 1.7 μm2⋅ms-1 was also suboptimal in the infant brain for both white and gray matter with optimal values being significantly lower. Minor optimum d∥ differences were observed versus diffusion protocol. No significant sex effects were observed. Additionally, changes in d∥ resulted in significant changes to the estimated NODDI parameters. The default (d∥) of 1.7 μm2⋅ms-1 is suboptimal in gray matter and infant brains.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0217118