Quantitation of free glycation compounds in saliva

In the course of the Maillard reaction, which occurs during heating of food but also under physiological condition, a broad spectrum of reaction products is formed. Among them, the advanced glycation endproducts (AGEs) Nε-carboxymethyllysine (CML), pyrraline (Pyr), methylglyoxal-derived hydroimidazo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-09, Vol.14 (9), p.e0220208-e0220208
Hauptverfasser: Manig, Friederike, Hellwig, Michael, Pietz, Franziska, Henle, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the course of the Maillard reaction, which occurs during heating of food but also under physiological condition, a broad spectrum of reaction products is formed. Among them, the advanced glycation endproducts (AGEs) Nε-carboxymethyllysine (CML), pyrraline (Pyr), methylglyoxal-derived hydroimidazolone 1 (MG-H1) and Nε-carboxyethyllysine (CEL) are the quantitatively dominating compounds during later reaction stages. Those dietary glycation compounds are under discussion as to be associated with chronic inflammation and the pathophysiological consequences of diseases such as diabetes. In the present study, the concentration of individual glycation compounds in saliva was monitored for the first time and related to their dietary uptake. Fasting saliva of 33 metabolically healthy subjects was analyzed with HPLC-MS/MS. The observed levels of individual glycation compounds ranged from 0.5 to 55.2 ng/ml and differed both intra- and interindividually. Patterns did not correlate with subject-related features such as vegetarianism or sports activities, indicating that dietary intake may play an important role. Therefore, six volunteers were asked to eat a raw food diet free of glycation compounds for two days. Within two days, salivary Pyr was lowered from median 1.7 ng/ml to a minimum level below the limit of detection, and MG-H1 decreased from 3.6 to 1.7 ng/ml in in a time-dependent manner after two days. Salivary CML and CEL concentrations were not affected. Therefore, measuring Pyr and MG-H1 in saliva is a suitable diagnostic tool to monitor the dietary intake and metabolic transit of glycation compounds present in heated foods.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0220208