Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model

Nitrification in terrestrial soils is one of the major processes of emission of nitrous oxide (N2O), a potent greenhouse gas and stratospheric-ozone-depleting substance. We assessed the fraction of N2O emission associated with nitrification in soil through a meta-analysis and sensitivity analysis us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-07, Vol.14 (7), p.e0219159-e0219159
Hauptverfasser: Inatomi, Motoko, Hajima, Tomohiro, Ito, Akihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrification in terrestrial soils is one of the major processes of emission of nitrous oxide (N2O), a potent greenhouse gas and stratospheric-ozone-depleting substance. We assessed the fraction of N2O emission associated with nitrification in soil through a meta-analysis and sensitivity analysis using a process-based model. We corrected observational values of gross nitrification and associated N2O emission rates from 71 records for various soils in the world spanning from 0.006% to 29.5%. We obtained a median value of 0.14%, and then assessed how the nitrification-associated N2O emission fraction has been considered in terrestrial nitrogen cycle models. Using a process-based biogeochemical model, we conducted a series of sensitivity analyses for the effects of different values of nitrification-associated N2O emission fraction on soil N2O emission. Using an empirical relationship between soil pH and nitrification-associated N2O emission fraction, the model well simulated global emission patterns (global total in the 2000s, 16.8 Tg N2O yr-1). Differences in the nitrification-associated N2O emission fraction caused differences in total N2O emission of as much as 2.5 Tg N2O yr-1. Therefore, to obtain reliable estimation of soil N2O emission for nitrogen and climate management, it is important to constrain the parameterization in models by ensuring extensive and accurate observations.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0219159