Discovery of a dual protease mechanism that promotes DNA damage checkpoint recovery
The DNA damage response is a signaling pathway found throughout biology. In many bacteria the DNA damage checkpoint is enforced by inducing expression of a small, membrane bound inhibitor that delays cell division providing time to repair damaged chromosomes. How cells promote checkpoint recovery af...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2018-07, Vol.14 (7), p.e1007512-e1007512 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The DNA damage response is a signaling pathway found throughout biology. In many bacteria the DNA damage checkpoint is enforced by inducing expression of a small, membrane bound inhibitor that delays cell division providing time to repair damaged chromosomes. How cells promote checkpoint recovery after sensing successful repair is unknown. By using a high-throughput, forward genetic screen, we identified two unrelated proteases, YlbL and CtpA, that promote DNA damage checkpoint recovery in Bacillus subtilis. Deletion of both proteases leads to accumulation of the checkpoint protein YneA. We show that DNA damage sensitivity and increased cell elongation in protease mutants depends on yneA. Further, expression of YneA in protease mutants was sufficient to inhibit cell proliferation. Finally, we show that both proteases interact with YneA and that one of the two proteases, CtpA, directly cleaves YneA in vitro. With these results, we report the mechanism for DNA damage checkpoint recovery in bacteria that use membrane bound cell division inhibitors. |
---|---|
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1007512 |