Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices

The mechanical properties of the extracellular matrix (ECM)-a complex, 3D, fibrillar scaffold of cells in physiological environments-modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2019-04, Vol.15 (4), p.e1006684-e1006684
Hauptverfasser: Malandrino, Andrea, Trepat, Xavier, Kamm, Roger D, Mak, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanical properties of the extracellular matrix (ECM)-a complex, 3D, fibrillar scaffold of cells in physiological environments-modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs-collagen I and fibrin-in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1006684