The nonlinear dynamics and fluctuations of mRNA levels in cell cycle coupled transcription
Gene transcription is a noisy process, and cell division cycle is an important source of gene transcription noise. In this work, we develop a mathematical approach by coupling transcription kinetics with cell division cycles to delineate how they are combined to regulate transcription output and noi...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2019-04, Vol.15 (4), p.e1007017-e1007017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gene transcription is a noisy process, and cell division cycle is an important source of gene transcription noise. In this work, we develop a mathematical approach by coupling transcription kinetics with cell division cycles to delineate how they are combined to regulate transcription output and noise. In view of gene dosage, a cell cycle is divided into an early stage [Formula: see text] and a late stage [Formula: see text]. The analytical forms for the mean and the noise of mRNA numbers are given in each stage. The analysis based on these formulas predicts precisely the fold change r* of mRNA numbers from [Formula: see text] to [Formula: see text] measured in a mouse embryonic stem cell line. When transcription follows similar kinetics in both stages, r* buffers against DNA dosage variation and r* ∈ (1, 2). Numerical simulations suggest that increasing cell cycle durations up-regulates transcription with less noise, whereas rapid stage transitions induce highly noisy transcription. A minimization of the transcription noise is observed when transcription homeostasis is attained by varying a single kinetic rate. When the transcription level scales with cellular volume, either by reducing the transcription burst frequency or by increasing the burst size in [Formula: see text], the noise shows only a minor variation over a wide range of cell cycle stage durations. The reduction level in the burst frequency is nearly a constant, whereas the increase in the burst size is conceivably sensitive, when responding to a large random variation of the cell cycle durations and the gene duplication time. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1007017 |