Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis
While the neurobiology of simple and habitual choices is relatively well known, our current understanding of goal-directed choices and planning in the brain is still limited. Theoretical work suggests that goal-directed computations can be productively associated to model-based (reinforcement learni...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2018-09, Vol.14 (9), p.e1006316-e1006316 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While the neurobiology of simple and habitual choices is relatively well known, our current understanding of goal-directed choices and planning in the brain is still limited. Theoretical work suggests that goal-directed computations can be productively associated to model-based (reinforcement learning) computations, yet a detailed mapping between computational processes and neuronal circuits remains to be fully established. Here we report a computational analysis that aligns Bayesian nonparametrics and model-based reinforcement learning (MB-RL) to the functioning of the hippocampus (HC) and the ventral striatum (vStr)-a neuronal circuit that increasingly recognized to be an appropriate model system to understand goal-directed (spatial) decisions and planning mechanisms in the brain. We test the MB-RL agent in a contextual conditioning task that depends on intact hippocampus and ventral striatal (shell) function and show that it solves the task while showing key behavioral and neuronal signatures of the HC-vStr circuit. Our simulations also explore the benefits of biological forms of look-ahead prediction (forward sweeps) during both learning and control. This article thus contributes to fill the gap between our current understanding of computational algorithms and biological realizations of (model-based) reinforcement learning. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1006316 |