Developing a modern data workflow for regularly updated data
Over the past decade, biology has undergone a data revolution in how researchers collect data and the amount of data being collected. An emerging challenge that has received limited attention in biology is managing, working with, and providing access to data under continual active collection. Regula...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2019-01, Vol.17 (1), p.e3000125 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past decade, biology has undergone a data revolution in how researchers collect data and the amount of data being collected. An emerging challenge that has received limited attention in biology is managing, working with, and providing access to data under continual active collection. Regularly updated data present unique challenges in quality assurance and control, data publication, archiving, and reproducibility. We developed a workflow for a long-term ecological study that addresses many of the challenges associated with managing this type of data. We do this by leveraging existing tools to 1) perform quality assurance and control; 2) import, restructure, version, and archive data; 3) rapidly publish new data in ways that ensure appropriate credit to all contributors; and 4) automate most steps in the data pipeline to reduce the time and effort required by researchers. The workflow leverages tools from software development, including version control and continuous integration, to create a modern data management system that automates the pipeline. |
---|---|
ISSN: | 1545-7885 1544-9173 1545-7885 |
DOI: | 10.1371/journal.pbio.3000125 |