The effect of metal mixture composition on toxicity to C. elegans at individual and population levels

The toxicity of zinc (Zn), copper (Cu), and cadmium (Cd) to the nematode Caenorhabditis elegans was characterised under single metal and mixture scenarios at different organisational levels. The effects on population size and body length were investigated at two concentrations corresponding to the 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-06, Vol.14 (6), p.e0218929-e0218929
Hauptverfasser: Moyson, Sofie, Town, Raewyn M, Vissenberg, Kris, Blust, Ronny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The toxicity of zinc (Zn), copper (Cu), and cadmium (Cd) to the nematode Caenorhabditis elegans was characterised under single metal and mixture scenarios at different organisational levels. The effects on population size and body length were investigated at two concentrations corresponding to the 24 h LC5 and LC20 levels. Metal toxicity was dependent on metal concentration, exposure time and mixture composition. Populations exposed to LC20 levels of Cd, ZnCu, CuCd and ZnCuCd plummeted, while for all LC5 concentrations, population size continued to increase, albeit that single metals were less harmful than mixtures. Combinations of the LC20 concentration of Cd with a range of Zn concentrations showed concentration dependent mitigating effects on population size and antagonistic effects on mortality. By combining effects at different organisational levels, more insight into metal toxicity was obtained. Metal effects were more evident on population size than on body length or mortality, suggesting that population size could be considered as a sensitive endpoint. Furthermore, our observations of ZnCd mixture effects at the individual and population levels are consistent with literature data on the dose-dependent expression of the cdf-2 gene, which is involved in mediation of Zn and Cd toxicity.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0218929