Diabetes downregulates renal adenosine A2A receptors in an experimental model of hypertension

Studies on diabetic nephropathy rarely take into account that the co-existence of diabetes and hypertension is frequent and further aggravates the prognosis of renal dysfunction. Adenosine can activate four subtypes of adenosine receptors (A1, A2A, A2B and A3) and has been implicated in diabetic nep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-05, Vol.14 (5), p.e0217552-e0217552
Hauptverfasser: Patinha, Daniela, Carvalho, Carla, Abreu, Carla, Cunha, Olga M, Mota, Mariana C, Afonso, Joana, Albino-Teixeira, António, Diniz, Carmen, Morato, Manuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies on diabetic nephropathy rarely take into account that the co-existence of diabetes and hypertension is frequent and further aggravates the prognosis of renal dysfunction. Adenosine can activate four subtypes of adenosine receptors (A1, A2A, A2B and A3) and has been implicated in diabetic nephropathy. However, it is not known if, in hypertensive conditions, diabetes alters the presence/distribution profile of renal adenosine receptors. The aim of this work was to describe the presence/distribution profile of the four adenosine receptors in six renal structures (superficial/deep glomeruli, proximal/distal tubules, loop of Henle, collecting tubule) of the hypertensive kidney and to evaluate whether it is altered by diabetes. Immunoreactivities against the adenosine receptors were analyzed in six renal structures from spontaneously hypertensive rats (SHR, the control group) and from SHR rats with diabetes induced by streptozotocyin (SHR-STZ group). Data showed, for the first time, that all adenosine receptors were present in the kidney of SHR rats, although the distribution pattern was specific for each adenosine receptor subtype. Also, induction of diabetes in the SHR was associated with downregulation of adenosine A2A receptors, which might be relevant for the development of hypertensive diabetic nephropathy. This study highlights the adenosine A2A receptors as a potential target to explore to prevent and/or treat early diabetes-induced hyperfiltration, at least in hypertensive conditions.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0217552