Metabolic profiling of zebrafish embryo development from blastula period to early larval stages

The zebrafish embryo is a popular model for drug screening, disease modelling and molecular genetics. In this study, samples were obtained from zebrafish at different developmental stages. The stages that were chosen were 3/4, 4/5, 24, 48, 72 and 96 hours post fertilization (hpf). Each sample includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-05, Vol.14 (5), p.e0213661
Hauptverfasser: Dhillon, Sundeep S, Torell, Frida, Donten, Magdalena, Lundstedt-Enkel, Katrin, Bennett, Kate, Rännar, Stefan, Trygg, Johan, Lundstedt, Torbjörn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The zebrafish embryo is a popular model for drug screening, disease modelling and molecular genetics. In this study, samples were obtained from zebrafish at different developmental stages. The stages that were chosen were 3/4, 4/5, 24, 48, 72 and 96 hours post fertilization (hpf). Each sample included fifty embryos. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Principle component analysis (PCA) was applied to get an overview of the data and orthogonal projection to latent structure discriminant analysis (OPLS-DA) was utilised to discriminate between the developmental stages. In this way, changes in metabolite profiles during vertebrate development could be identified. Using a GC-TOF-MS metabolomics approach it was found that nucleotides and metabolic fuel (glucose) were elevated at early stages of embryogenesis, whereas at later stages amino acids and intermediates in the Krebs cycle were abundant. This agrees with zebrafish developmental biology, as organs such as the liver and pancreas develop at later stages. Thus, metabolomics of zebrafish embryos offers a unique opportunity to investigate large scale changes in metabolic processes during important developmental stages in vertebrate development. In terms of stability of the metabolic profile and viability of the embryos, it was concluded at 72 hpf was a suitable time point for the use of zebrafish as a model system in numerous scientific applications.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0213661