Automated summarisation of SDOCT volumes using deep learning: Transfer learning vs de novo trained networks
Spectral-domain optical coherence tomography (SDOCT) is a non-invasive imaging modality that generates high-resolution volumetric images. This modality finds widespread usage in ophthalmology for the diagnosis and management of various ocular conditions. The volumes generated can contain 200 or more...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-05, Vol.14 (5), p.e0203726-e0203726 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectral-domain optical coherence tomography (SDOCT) is a non-invasive imaging modality that generates high-resolution volumetric images. This modality finds widespread usage in ophthalmology for the diagnosis and management of various ocular conditions. The volumes generated can contain 200 or more B-scans. Manual inspection of such large quantity of scans is time consuming and error prone in most clinical settings. Here, we present a method for the generation of visual summaries of SDOCT volumes, wherein a small set of B-scans that highlight the most clinically relevant features in a volume are extracted. The method was trained and evaluated on data acquired from age-related macular degeneration patients, and "relevance" was defined as the presence of visibly discernible structural abnormalities. The summarisation system consists of a detection module, where relevant B-scans are extracted from the volume, and a set of rules that determines which B-scans are included in the visual summary. Two deep learning approaches are presented and compared for the classification of B-scans-transfer learning and de novo learning. Both approaches performed comparably with AUCs of 0.97 and 0.96, respectively, obtained on an independent test set. The de novo network, however, was 98% smaller than the transfer learning approach, and had a run-time that was also significantly shorter. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0203726 |