A seleno-hormetine protects bone marrow hematopoietic cells against ionizing radiation-induced toxicities

2,2'-diselenyldibenzoic acid (DSBA) is a chemical probe produced to explore the pharmacological properties of diphenyldiselenide-derived agents with seleno-hormetic activity undergoing preclinical development. The present study was designed to verify in vivo the drug's properties and to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-04, Vol.14 (4), p.e0205626-e0205626
Hauptverfasser: Bartolini, Desirée, Wang, Yanzhong, Zhang, Jie, Giustarini, Daniela, Rossi, Ranieri, Wang, Gavin Y, Torquato, Pierangelo, Townsend, Danyelle M, Tew, Kenneth D, Galli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2,2'-diselenyldibenzoic acid (DSBA) is a chemical probe produced to explore the pharmacological properties of diphenyldiselenide-derived agents with seleno-hormetic activity undergoing preclinical development. The present study was designed to verify in vivo the drug's properties and to determine mechanistically how these may mediate the protection of tissues against stress conditions, exemplified by ionizing radiation induced damage in mouse bone marrow. In murine bone marrow hematopoietic cells, the drug initiated the activation of the Nrf2 transcription factor resulting in enhanced expression of downstream stress response genes. This type of response was confirmed in human liver cells and included enhanced expression of glutathione S-transferases (GST), important in the metabolism and pharmacological function of seleno-compounds. In C57 BL/6 mice, DSBA prevented the suppression of bone marrow hematopoietic cells caused by ionizing radiation exposure. Such in vivo prevention effects were associated with Nrf2 pathway activation in both bone marrow cells and liver tissue. These findings demonstrated for the first time the pharmacological properties of DSBA in vivo, suggesting a practical application for this type of Se-hormetic molecules as a radioprotective and/or prevention agents in cancer treatments.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0205626