[NiFe]-hydrogenases are constitutively expressed in an enriched Methanobacterium sp. population during electromethanogenesis

Electromethanogenesis is the bioreduction of carbon dioxide (CO2) to methane (CH4) utilizing an electrode as electron donor. Some studies have reported the active participation of Methanobacterium sp. in electron capturing, although no conclusive results are available. In this study, we aimed at det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-04, Vol.14 (4), p.e0215029-e0215029
Hauptverfasser: Perona-Vico, Elisabet, Blasco-Gómez, Ramiro, Colprim, Jesús, Puig, Sebastià, Bañeras, Lluis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electromethanogenesis is the bioreduction of carbon dioxide (CO2) to methane (CH4) utilizing an electrode as electron donor. Some studies have reported the active participation of Methanobacterium sp. in electron capturing, although no conclusive results are available. In this study, we aimed at determining short-time changes in the expression levels of [NiFe]-hydrogenases (Eha, Ehb and Mvh), heterodisulfide reductase (Hdr), coenzyme F420-reducing [NiFe]-hydrogenase (Frh), and hydrogenase maturation protein (HypD), according to the electron flow in independently connected carbon cloth cathodes poised at- 800 mV vs. standard hydrogen electrode (SHE). Amplicon massive sequencing of cathode biofilm confirmed the presence of an enriched Methanobacterium sp. population (>70% of sequence reads), which remained in an active state (78% of cDNA reads), tagging this archaeon as the main methane producer in the system. Quantitative RT-PCR determinations of ehaB, ehbL, mvhA, hdrA, frhA, and hypD genes resulted in only slight (up to 1.5 fold) changes for four out of six genes analyzed when cells were exposed to open (disconnected) or closed (connected) electric circuit events. The presented results suggested that suspected mechanisms for electron capturing were not regulated at the transcriptional level in Methanobacterium sp. for short time exposures of the cells to connected-disconnected circuits. Additional tests are needed in order to confirm proteins that participate in electron capturing in Methanobacterium sp.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0215029