Supervised and extended restart in random walks for ranking and link prediction in networks

Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-03, Vol.14 (3), p.e0213857-e0213857
Hauptverfasser: Jin, Woojeong, Jung, Jinhong, Kang, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0213857
container_issue 3
container_start_page e0213857
container_title PloS one
container_volume 14
creator Jin, Woojeong
Jung, Jinhong
Kang, U
description Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR suffers from two problems: 1) using the same restart probability for all the nodes limits the expressiveness of random walk, and 2) the restart probability needs to be manually chosen for each application without theoretical justification. We have two main contributions in this paper. First, we propose Random Walk with Extended Restart (RWER), a random walk based measure which improves the expressiveness of random walks by using a distinct restart probability for each node. The improved expressiveness leads to superior accuracy for ranking and link prediction. Second, we propose SuRe (Supervised Restart for RWER), an algorithm for learning the restart probabilities of RWER from a given graph. SuRe eliminates the need to heuristically and manually select the restart parameter for RWER. Extensive experiments show that our proposed method provides the best performance for ranking and link prediction tasks.
doi_str_mv 10.1371/journal.pone.0213857
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2195359141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A579457437</galeid><doaj_id>oai_doaj_org_article_cbcb672b7da84bc0a8d4351f3ac787cb</doaj_id><sourcerecordid>A579457437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8477e77e9eb5388d65251242a6f2773305b5fe4eab17cc285c7972712ad844033</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0RJ_OzdI08RHpUmTGHDDheXYTuvWtTs72eDf46zZ1KBdoERKcvy8r31OzimKl6CaA8TAh3Xoo5duvgvezCsIECfsUXEMagRnFFbo8cH7UfEspXVVEcQpfVocoYrXCDFyXPy67HcmXttkdCm9Ls3vznidP6JJnYxdaX0Z80LYljfSbVLZhjgENtYvbwXO-k25i0Zb1dngB96b7ibETXpePGmlS-bF-Dwpfnz-9P3s6-z84svi7PR8pmgNuxnHjJl816bJ5-OaEkgAxFDSFjKGUEUa0hpsZAOYUpATxWoGGYBSc4wrhE6K13vfnQtJjHVJAoKaIFIDDDKx2BM6yLXYRbuV8Y8I0orbQIhLkXO1yhmhGtVQBhumJceNqiTXGBHQIqkYZ6rJXh_H3fpma7QyvovSTUynK96uxDJcC4ohBZxkg3ejQQxXfS6z2NqkjHPSm9Dvzw0pqzHN6Jt_0IezG6mlzAlY34a8rxpMxSnJPoRhxDI1f4DKlzZbq3ITtTbHJ4L3E0FmutweS9mnJBaX3_6fvfg5Zd8esCsjXbdKwfVD-6QpiPegiiGlaNr7IoNKDDNwVw0xzIAYZyDLXh3-oHvRXdOjv0DbAWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195359141</pqid></control><display><type>article</type><title>Supervised and extended restart in random walks for ranking and link prediction in networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Woojeong ; Jung, Jinhong ; Kang, U</creator><contributor>Grolmusz, Vince</contributor><creatorcontrib>Jin, Woojeong ; Jung, Jinhong ; Kang, U ; Grolmusz, Vince</creatorcontrib><description>Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR suffers from two problems: 1) using the same restart probability for all the nodes limits the expressiveness of random walk, and 2) the restart probability needs to be manually chosen for each application without theoretical justification. We have two main contributions in this paper. First, we propose Random Walk with Extended Restart (RWER), a random walk based measure which improves the expressiveness of random walks by using a distinct restart probability for each node. The improved expressiveness leads to superior accuracy for ranking and link prediction. Second, we propose SuRe (Supervised Restart for RWER), an algorithm for learning the restart probabilities of RWER from a given graph. SuRe eliminates the need to heuristically and manually select the restart parameter for RWER. Extensive experiments show that our proposed method provides the best performance for ranking and link prediction tasks.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0213857</identifier><identifier>PMID: 30893375</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Anomalies ; Artificial intelligence ; Biology and Life Sciences ; Community ; Computer and Information Sciences ; Data mining ; International conferences ; Knowledge discovery ; Machine learning ; Natural language processing ; Physical Sciences ; Prediction theory ; Probability ; Random walk ; Random walk theory ; Ranking ; Research and Analysis Methods ; Social Sciences ; Support Vector Machine ; Teaching methods</subject><ispartof>PloS one, 2019-03, Vol.14 (3), p.e0213857-e0213857</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Jin et al 2019 Jin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8477e77e9eb5388d65251242a6f2773305b5fe4eab17cc285c7972712ad844033</citedby><cites>FETCH-LOGICAL-c692t-8477e77e9eb5388d65251242a6f2773305b5fe4eab17cc285c7972712ad844033</cites><orcidid>0000-0002-8774-6950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30893375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grolmusz, Vince</contributor><creatorcontrib>Jin, Woojeong</creatorcontrib><creatorcontrib>Jung, Jinhong</creatorcontrib><creatorcontrib>Kang, U</creatorcontrib><title>Supervised and extended restart in random walks for ranking and link prediction in networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR suffers from two problems: 1) using the same restart probability for all the nodes limits the expressiveness of random walk, and 2) the restart probability needs to be manually chosen for each application without theoretical justification. We have two main contributions in this paper. First, we propose Random Walk with Extended Restart (RWER), a random walk based measure which improves the expressiveness of random walks by using a distinct restart probability for each node. The improved expressiveness leads to superior accuracy for ranking and link prediction. Second, we propose SuRe (Supervised Restart for RWER), an algorithm for learning the restart probabilities of RWER from a given graph. SuRe eliminates the need to heuristically and manually select the restart parameter for RWER. Extensive experiments show that our proposed method provides the best performance for ranking and link prediction tasks.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Community</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>International conferences</subject><subject>Knowledge discovery</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Physical Sciences</subject><subject>Prediction theory</subject><subject>Probability</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Ranking</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Support Vector Machine</subject><subject>Teaching methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0RJ_OzdI08RHpUmTGHDDheXYTuvWtTs72eDf46zZ1KBdoERKcvy8r31OzimKl6CaA8TAh3Xoo5duvgvezCsIECfsUXEMagRnFFbo8cH7UfEspXVVEcQpfVocoYrXCDFyXPy67HcmXttkdCm9Ls3vznidP6JJnYxdaX0Z80LYljfSbVLZhjgENtYvbwXO-k25i0Zb1dngB96b7ibETXpePGmlS-bF-Dwpfnz-9P3s6-z84svi7PR8pmgNuxnHjJl816bJ5-OaEkgAxFDSFjKGUEUa0hpsZAOYUpATxWoGGYBSc4wrhE6K13vfnQtJjHVJAoKaIFIDDDKx2BM6yLXYRbuV8Y8I0orbQIhLkXO1yhmhGtVQBhumJceNqiTXGBHQIqkYZ6rJXh_H3fpma7QyvovSTUynK96uxDJcC4ohBZxkg3ejQQxXfS6z2NqkjHPSm9Dvzw0pqzHN6Jt_0IezG6mlzAlY34a8rxpMxSnJPoRhxDI1f4DKlzZbq3ITtTbHJ4L3E0FmutweS9mnJBaX3_6fvfg5Zd8esCsjXbdKwfVD-6QpiPegiiGlaNr7IoNKDDNwVw0xzIAYZyDLXh3-oHvRXdOjv0DbAWg</recordid><startdate>20190320</startdate><enddate>20190320</enddate><creator>Jin, Woojeong</creator><creator>Jung, Jinhong</creator><creator>Kang, U</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8774-6950</orcidid></search><sort><creationdate>20190320</creationdate><title>Supervised and extended restart in random walks for ranking and link prediction in networks</title><author>Jin, Woojeong ; Jung, Jinhong ; Kang, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8477e77e9eb5388d65251242a6f2773305b5fe4eab17cc285c7972712ad844033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Community</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>International conferences</topic><topic>Knowledge discovery</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Physical Sciences</topic><topic>Prediction theory</topic><topic>Probability</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Ranking</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Support Vector Machine</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Woojeong</creatorcontrib><creatorcontrib>Jung, Jinhong</creatorcontrib><creatorcontrib>Kang, U</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Woojeong</au><au>Jung, Jinhong</au><au>Kang, U</au><au>Grolmusz, Vince</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised and extended restart in random walks for ranking and link prediction in networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-03-20</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>e0213857</spage><epage>e0213857</epage><pages>e0213857-e0213857</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR suffers from two problems: 1) using the same restart probability for all the nodes limits the expressiveness of random walk, and 2) the restart probability needs to be manually chosen for each application without theoretical justification. We have two main contributions in this paper. First, we propose Random Walk with Extended Restart (RWER), a random walk based measure which improves the expressiveness of random walks by using a distinct restart probability for each node. The improved expressiveness leads to superior accuracy for ranking and link prediction. Second, we propose SuRe (Supervised Restart for RWER), an algorithm for learning the restart probabilities of RWER from a given graph. SuRe eliminates the need to heuristically and manually select the restart parameter for RWER. Extensive experiments show that our proposed method provides the best performance for ranking and link prediction tasks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30893375</pmid><doi>10.1371/journal.pone.0213857</doi><tpages>e0213857</tpages><orcidid>https://orcid.org/0000-0002-8774-6950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-03, Vol.14 (3), p.e0213857-e0213857
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2195359141
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Analysis
Anomalies
Artificial intelligence
Biology and Life Sciences
Community
Computer and Information Sciences
Data mining
International conferences
Knowledge discovery
Machine learning
Natural language processing
Physical Sciences
Prediction theory
Probability
Random walk
Random walk theory
Ranking
Research and Analysis Methods
Social Sciences
Support Vector Machine
Teaching methods
title Supervised and extended restart in random walks for ranking and link prediction in networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20and%20extended%20restart%20in%20random%20walks%20for%20ranking%20and%20link%20prediction%20in%20networks&rft.jtitle=PloS%20one&rft.au=Jin,%20Woojeong&rft.date=2019-03-20&rft.volume=14&rft.issue=3&rft.spage=e0213857&rft.epage=e0213857&rft.pages=e0213857-e0213857&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0213857&rft_dat=%3Cgale_plos_%3EA579457437%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195359141&rft_id=info:pmid/30893375&rft_galeid=A579457437&rft_doaj_id=oai_doaj_org_article_cbcb672b7da84bc0a8d4351f3ac787cb&rfr_iscdi=true