Supervised and extended restart in random walks for ranking and link prediction in networks

Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-03, Vol.14 (3), p.e0213857-e0213857
Hauptverfasser: Jin, Woojeong, Jung, Jinhong, Kang, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR suffers from two problems: 1) using the same restart probability for all the nodes limits the expressiveness of random walk, and 2) the restart probability needs to be manually chosen for each application without theoretical justification. We have two main contributions in this paper. First, we propose Random Walk with Extended Restart (RWER), a random walk based measure which improves the expressiveness of random walks by using a distinct restart probability for each node. The improved expressiveness leads to superior accuracy for ranking and link prediction. Second, we propose SuRe (Supervised Restart for RWER), an algorithm for learning the restart probabilities of RWER from a given graph. SuRe eliminates the need to heuristically and manually select the restart parameter for RWER. Extensive experiments show that our proposed method provides the best performance for ranking and link prediction tasks.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0213857