Parametrical modelling for texture characterization-A novel approach applied to ultrasound thyroid segmentation

Texture analysis is an important topic in Ultrasound (US) image analysis for structure segmentation and tissue classification. In this work a novel approach for US image texture feature extraction is presented. It is mainly based on parametrical modelling of a signal version of the US image in order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-01, Vol.14 (1), p.e0211215-e0211215
Hauptverfasser: Illanes, Alfredo, Esmaeili, Nazila, Poudel, Prabal, Balakrishnan, Sathish, Friebe, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Texture analysis is an important topic in Ultrasound (US) image analysis for structure segmentation and tissue classification. In this work a novel approach for US image texture feature extraction is presented. It is mainly based on parametrical modelling of a signal version of the US image in order to process it as data resulting from a dynamical process. Because of the predictive characteristics of such a model representation, good estimations of texture features can be obtained with less data than generally used methods require, allowing higher robustness to low Signal-to-Noise ratio and a more localized US image analysis. The usability of the proposed approach was demonstrated by extracting texture features for segmenting the thyroid in US images. The obtained results showed that features corresponding to energy ratios between different modelled texture frequency bands allowed to clearly distinguish between thyroid and non-thyroid texture. A simple k-means clustering algorithm has been used for separating US image patches as belonging to thyroid or not. Segmentation of thyroid was performed in two different datasets obtaining Dice coefficients over 85%.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0211215