Fixed or flexible? Orientation preference in identity and gaze processing in humans
Vision begins with the encoding of contrast at specific orientations. Several works showed that humans identify their conspecifics best based on the horizontally-oriented information contained in the face image; this range conveys the main morphological features of the face. In contrast, the vertica...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-01, Vol.14 (1), p.e0210503-e0210503 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vision begins with the encoding of contrast at specific orientations. Several works showed that humans identify their conspecifics best based on the horizontally-oriented information contained in the face image; this range conveys the main morphological features of the face. In contrast, the vertical structure of the eye region seems to deliver optimal cues to gaze direction. The present work investigates whether the human face processing system flexibly tunes to vertical information contained in the eye region when processing gaze direction. Alternatively, face processing may invariantly rely on the horizontal range, supporting the domain specificity of orientation tuning for faces and the gateway role of horizontal content to access any type of facial information. Participants judged the gaze direction of faces staring at a range of lateral positions. They additionally performed an identification task with upright and inverted face stimuli. Across tasks, stimuli were filtered to selectively reveal horizontal (H), vertical (V), or combined (HV) information. Most participants identified faces better based on horizontal than vertical information confirming the horizontal tuning of face identification. In contrast, they showed a vertically-tuned sensitivity to gaze direction. The logistic functions fitting the "left" and "right" response proportion as a function of gaze direction were indeed steeper when based on vertical than on horizontal information. The finding of a vertically-tuned processing of gaze direction favours the hypothesis that visual encoding of face information flexibly switches to the orientation channel carrying the cues most relevant to the task at hand. It suggests that horizontal structure, though predominant in the face stimulus, is not a mandatory gateway for efficient face processing. The present evidence may help better understand how visual signals travel the visual system to enable rich and complex representations of naturalistic stimuli such as faces. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0210503 |