Random selection of factors preserves the correlation structure in a linear factor model to a high degree

In a very high-dimensional vector space, two randomly-chosen vectors are almost orthogonal with high probability. Starting from this observation, we develop a statistical factor model, the random factor model, in which factors are chosen stochastically based on the random projection method. Randomne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-12, Vol.13 (12), p.e0206551-e0206551
Hauptverfasser: Tanskanen, Antti J, Lukkarinen, Jani, Vatanen, Kari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a very high-dimensional vector space, two randomly-chosen vectors are almost orthogonal with high probability. Starting from this observation, we develop a statistical factor model, the random factor model, in which factors are chosen stochastically based on the random projection method. Randomness of factors has the consequence that correlation and covariance matrices are well preserved in a linear factor representation. It also enables derivation of probabilistic bounds for the accuracy of the random factor representation of time-series, their cross-correlations and covariances. As an application, we analyze reproduction of time-series and their cross-correlation coefficients in the well-diversified Russell 3,000 equity index.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0206551