Lack of NWC protein (c11orf74 homolog) in murine spermatogenesis results in reduced sperm competitiveness and impaired ability to fertilize egg cells in vitro

NWC is an uncharacterised protein containing three strongly conserved domains not found in any other known protein. Previously, we reported that the NWC protein is detected in cells in the germinal layer in murine testes (strain: C57BL/6), and its knockout results in no obvious phenotype. We determi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-12, Vol.13 (12), p.e0208649-e0208649
Hauptverfasser: Majkowski, Michal, Laszkiewicz, Agnieszka, Sniezewski, Lukasz, Grzmil, Pawel, Pawlicka, Bernadetta, Tomczyk, Igor, Michniewicz, Martyna, Kapusniak, Violetta, Janik, Sylwia, Chodaczek, Grzegorz, Cebrat, Malgorzata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NWC is an uncharacterised protein containing three strongly conserved domains not found in any other known protein. Previously, we reported that the NWC protein is detected in cells in the germinal layer in murine testes (strain: C57BL/6), and its knockout results in no obvious phenotype. We determined the NWC expression pattern during spermatogenesis, and found this protein in spermatocytes and round spermatids, but not in epididymal sperm. Although NWC knockout males are fertile, we further characterised their reproductive potential employing non-standard mating that better simulates the natural conditions by including sperm competition. Such an approach revealed that the sperm of knockout males fail to successfully compete with control sperm. After analysing selected characteristics of the male reproductive system, we found that NWC knockout sperm had a reduced ability to fertilize cumulus-intact eggs during IVF. This is the first report describing a subtle phenotype of NWC knockout mice that could be detected under non-standard mating conditions. Our results indicate that NWC plays an important role in spermatogenesis and its deficiency results in the production of functionally impaired sperm.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0208649