Community dynamics can modify the direction of simulated warming effects on crop yield

Climate change affects agriculture through a range of direct and indirect pathways. These include direct changes to impacts of pests and diseases on crops and indirect effects produced by interactions between organisms. It remains unclear whether the net effects of these biotic influences will be be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-11, Vol.13 (11), p.e0207796
Hauptverfasser: Gillespie, Mark A K, Jacometti, Marco, Tylianakis, Jason M, Wratten, Steve D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change affects agriculture through a range of direct and indirect pathways. These include direct changes to impacts of pests and diseases on crops and indirect effects produced by interactions between organisms. It remains unclear whether the net effects of these biotic influences will be beneficial or detrimental to crop yield because few studies consider multiple interactions within communities and the net effects of these on community structure and yield. In this study, we created two experimental grapevine communities in field cages, and quantified direct and indirect effects of key pest and disease species under simulated climate change conditions (elevated temperature and reduced humidity). We found that the net impact of simulated climate change on total yield differed for the two communities, with increased yield in one community and no effect in the other. These effects, and the interactions between pests and pathogens, may also have been affected by the prevailing abiotic conditions, and we discuss how these may contribute to our findings. These results demonstrate that future research should consider more of the interactions between key organisms affecting crops under varying abiotic conditions to help generate future recommendations for adapting to the effects of climate change.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0207796