A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management

Efforts to conserve bats in the western United States have long been impeded by a lack of information on their winter whereabouts, particularly bats in the genus Myotis. The recent arrival of white-nose syndrome in western North America has increased the urgency to characterize winter roost habitats...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-10, Vol.13 (10), p.e0205647-e0205647
Hauptverfasser: Weller, Theodore J, Rodhouse, Thomas J, Neubaum, Daniel J, Ormsbee, Patricia C, Dixon, Rita D, Popp, Diana L, Williams, Jason A, Osborn, Scott D, Rogers, Bruce W, Beard, Laura O, McIntire, Angela M, Hersey, Kimberly A, Tobin, Abigail, Bjornlie, Nichole L, Foote, Jennifer, Bachen, Dan A, Maxell, Bryce A, Morrison, Michael L, Thomas, Shawn C, Oliver, George V, Navo, Kirk W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efforts to conserve bats in the western United States have long been impeded by a lack of information on their winter whereabouts, particularly bats in the genus Myotis. The recent arrival of white-nose syndrome in western North America has increased the urgency to characterize winter roost habitats in this region. We compiled 4,549 winter bat survey records from 2,888 unique structures across 11 western states. Myotis bats were reported from 18.5% of structures with 95% of aggregations composed of ≤10 individuals. Only 11 structures contained ≥100 Myotis individuals and 6 contained ≥500 individuals. Townsend's big-eared bat (Corynorhinus townsendii) were reported from 38% of structures, with 72% of aggregations composed of ≤10 individuals. Aggregations of ≥100 Townsend's big-eared bats were observed at 41 different caves or mines across 9 states. We used zero-inflated negative binomial regression to explore biogeographic patterns of winter roost counts. Myotis counts were greater in caves than mines, in more recent years, and in more easterly longitudes, northerly latitudes, higher elevations, and in areas with higher surface temperatures and lower precipitation. Townsend's big-eared bat counts were greater in caves, during more recent years, and in more westerly longitudes. Karst topography was associated with higher Townsend's big-eared bat counts but did not appear to influence Myotis counts. We found stable or slightly-increasing trends over time in counts for both Myotis and Townsend's big-eared bats from 82 hibernacula surveyed ≥5 winters since 1990. Highly-dispersed winter roosting of Myotis in the western USA complicates efforts to monitor population trends and impacts of disease. However, our results reveal opportunities to monitor winter population status of Townsend's big-eared bats across this region.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0205647