Turbulent particle pair diffusion: A theory based on local and non-local diffusional processes

A re-appraisal of the Richardson's 1926 dataset [Richardson, L. F. Proc. Roy. Soc. Lond. A 100, 709-737, (1926)] displays an unequivocal non-local scaling for the pair diffusion coefficient, [Formula: see text], quite different to the previously assumed locality scaling law [Formula: see text],...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-10, Vol.13 (10), p.e0202940-e0202940
1. Verfasser: Malik, Nadeem A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A re-appraisal of the Richardson's 1926 dataset [Richardson, L. F. Proc. Roy. Soc. Lond. A 100, 709-737, (1926)] displays an unequivocal non-local scaling for the pair diffusion coefficient, [Formula: see text], quite different to the previously assumed locality scaling law [Formula: see text], where σl is the pair separation. Consequently, the foundations of turbulent pair diffusion theory are re-examined here and it is shown that pair diffusion is governed by both local and non-local diffusional processess inside the inertial subrange. In the context of generalised energy spectra, E(k) ∼ k-p for 1 < p ≤ 3, the new theory predicts two non-Richardson regimes depending on the size of the inertial subrange: (1) in the limit of asymptotically infinite subrange, non-local scaling laws is obtained, [Formula: see text], with γ intermediate between the purely local and the purely non-local scalings, i.e. (1 + p)/2 < γ ≤ 2; and (2) for finite (short) inertial subrange, local scaling laws are obtained, [Formula: see text]. The theory features a novel mathematical approach expressing the pair diffusion coefficient through a Fourier integral decomposition.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0202940