Turbulent particle pair diffusion: A theory based on local and non-local diffusional processes
A re-appraisal of the Richardson's 1926 dataset [Richardson, L. F. Proc. Roy. Soc. Lond. A 100, 709-737, (1926)] displays an unequivocal non-local scaling for the pair diffusion coefficient, [Formula: see text], quite different to the previously assumed locality scaling law [Formula: see text],...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-10, Vol.13 (10), p.e0202940-e0202940 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A re-appraisal of the Richardson's 1926 dataset [Richardson, L. F. Proc. Roy. Soc. Lond. A 100, 709-737, (1926)] displays an unequivocal non-local scaling for the pair diffusion coefficient, [Formula: see text], quite different to the previously assumed locality scaling law [Formula: see text], where σl is the pair separation. Consequently, the foundations of turbulent pair diffusion theory are re-examined here and it is shown that pair diffusion is governed by both local and non-local diffusional processess inside the inertial subrange. In the context of generalised energy spectra, E(k) ∼ k-p for 1 < p ≤ 3, the new theory predicts two non-Richardson regimes depending on the size of the inertial subrange: (1) in the limit of asymptotically infinite subrange, non-local scaling laws is obtained, [Formula: see text], with γ intermediate between the purely local and the purely non-local scalings, i.e. (1 + p)/2 < γ ≤ 2; and (2) for finite (short) inertial subrange, local scaling laws are obtained, [Formula: see text]. The theory features a novel mathematical approach expressing the pair diffusion coefficient through a Fourier integral decomposition. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0202940 |