Investigating the impact of a motion capture system on Microsoft Kinect v2 recordings: A caution for using the technologies together

Microsoft Kinect sensors are considered to be low-cost popular RGB-D sensors and are widely employed in various applications. Consequently, several studies have been conducted to evaluate the reliability and validity of Microsoft Kinect sensors, and noise models have been proposed for the sensors. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-09, Vol.13 (9), p.e0204052-e0204052
Hauptverfasser: Naeemabadi, MReza, Dinesen, Birthe, Andersen, Ole Kæseler, Hansen, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microsoft Kinect sensors are considered to be low-cost popular RGB-D sensors and are widely employed in various applications. Consequently, several studies have been conducted to evaluate the reliability and validity of Microsoft Kinect sensors, and noise models have been proposed for the sensors. Several studies utilized motion capture systems as a golden standard to assess the Microsoft Kinect sensors, and none of them reported interference between Kinect sensors and motion capture systems. This study aimed to investigate possible interference between a golden standard (i.e., Qualisys) and Microsoft Kinect v2. The depth recordings of Microsoft Kinect sensors were processed to estimate the intensity of interference. A flat non-reflective surface was utilized, and smoothness of the surface was measured using Microsoft Kinect v2 in absence and presence of an active motion capture system. The recording was repeated in five different distances. The results indicated that Microsoft Kinect v2 is distorted by the motion capture system and the distortion is increasing by increasing distance between Kinect and region of interest. Regarding the results, it can be concluded that the golden standard motion capture system is robust against interference from the Microsoft Kinect sensors.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0204052