Fluorinated methacrylamide chitosan hydrogel dressings enhance healing in an acute porcine wound model

Wound healing involves multiple interrelated processes required to lead to successful healing outcomes. Phagocytosis, inflammation, cell proliferation, angiogenesis, energy production, and collagen synthesis are all directly or indirectly dependent on oxygen. Along with other critical factors, such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-09, Vol.13 (9), p.e0203371-e0203371
Hauptverfasser: Patil, Pritam S, Evancho-Chapman, M Michelle, Li, Hang, Huang, He, George, Richard L, Shriver, Leah P, Leipzig, Nic D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wound healing involves multiple interrelated processes required to lead to successful healing outcomes. Phagocytosis, inflammation, cell proliferation, angiogenesis, energy production, and collagen synthesis are all directly or indirectly dependent on oxygen. Along with other critical factors, such as nutrition and comorbidities, availability of oxygen is a key determinant of healing success. Previously, we have presented a novel oxygenated hydrogel material that can be made into dressings for continuous localized oxygen delivery to wounds. In this study, an acute porcine wound model was used to test the healing benefits of these oxygenated MACF (MACF + O2) hydrogel dressings compared to controls, which included commercial Derma-GelTM hydrogel dressings. Wound closure and histological analyses were performed to assess re-epithelialization, collagen synthesis, angiogenesis, and keratinocyte maturation. Results from these assays revealed that wounds treated with MACF + O2 hydrogel dressings closed faster as compared to Derma-Gel (p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0203371