Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndrome in bats
Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. H...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-09, Vol.13 (9), p.e0201915-e0201915 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. Here, we establish a high-throughput model of infection using larvae of Galleria mellonella, an invertebrate used to study host-pathogen interactions for a wide range of microbial species. We demonstrate that P. destructans can kill G. mellonella larvae in an inoculum-dependent manner when infected larvae are housed at 13°C or 18°C. Larval killing is an active process, as heat-killed P. destructans spores caused significantly decreased levels of larval death compared to live spores. We also show that fungal spores that were germinated prior to inoculation were able to kill larvae 3-4 times faster than non-germinated spores. Lastly, we identified chemical inhibitors of P. destructans and used G. mellonella to evaluate these inhibitors for their ability to reduce virulence. We demonstrate that amphotericin B can effectively block larval killing by P. destructans and thereby establish that this infection model can be used to screen biocontrol agents against this fungal pathogen. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0201915 |