A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects

Ingestion of poorly digested, fermentable carbohydrates (fermentable oligo-, di-, mono-saccharides and polyols; FODMAPs) have been implicated in exacerbating intestinal symptoms and the reduction of intake with symptom alleviation. Restricting FODMAP intake is believed to relieve colonic distension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-07, Vol.13 (7), p.e0201410-e0201410
Hauptverfasser: Sloan, Tim J, Jalanka, Jonna, Major, Giles A D, Krishnasamy, Shanthi, Pritchard, Sue, Abdelrazig, Salah, Korpela, Katri, Singh, Gulzar, Mulvenna, Claire, Hoad, Caroline L, Marciani, Luca, Barrett, David A, Lomer, Miranda C E, de Vos, Willem M, Gowland, Penny A, Spiller, Robin C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ingestion of poorly digested, fermentable carbohydrates (fermentable oligo-, di-, mono-saccharides and polyols; FODMAPs) have been implicated in exacerbating intestinal symptoms and the reduction of intake with symptom alleviation. Restricting FODMAP intake is believed to relieve colonic distension by reducing colonic fermentation but this has not been previously directly assessed. We performed a randomised controlled trial comparing the effect of a low FODMAP diet combined with either maltodextrin or oligofructose on colonic contents, metabolites and microbiota. A parallel randomised controlled trial in healthy adults (n = 37). All subjects followed a low FODMAP diet for a week and supplemented their diet with either maltodextrin (MD) or oligofructose (OF) 7g twice daily. Fasted assessments performed pre- and post-diet included MRI to assess colonic volume, breath testing for hydrogen and methane, and stool collection for microbiota analysis. The low FODMAP diet was associated with a reduction in Bifidobacterium and breath hydrogen, which was reversed by oligofructose supplementation. The difference in breath hydrogen between groups post-intervention was 27ppm (95% CI 7 to 50, P
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0201410