The role of intracellular signaling in the stripe formation in engineered Escherichia coli populations

Recent experiments showed that engineered Escherichia coli colonies grow and self-organize into periodic stripes with high and low cell densities in semi-solid agar. The stripes develop sequentially behind a radially propagating colony front, similar to the formation of many other periodic patterns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-06, Vol.14 (6), p.e1006178-e1006178
Hauptverfasser: Xue, Xiaoru, Xue, Chuan, Tang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent experiments showed that engineered Escherichia coli colonies grow and self-organize into periodic stripes with high and low cell densities in semi-solid agar. The stripes develop sequentially behind a radially propagating colony front, similar to the formation of many other periodic patterns in nature. These bacteria were created by genetically coupling the intracellular chemotaxis pathway of wild-type cells with a quorum sensing module through the protein CheZ. In this paper, we develop multiscale models to investigate how this intracellular pathway affects stripe formation. We first develop a detailed hybrid model that treats each cell as an individual particle and incorporates intracellular signaling via an internal ODE system. To overcome the computational cost of the hybrid model caused by the large number of cells involved, we next derive a mean-field PDE model from the hybrid model using asymptotic analysis. We show that this analysis is justified by the tight agreement between the PDE model and the hybrid model in 1D simulations. Numerical simulations of the PDE model in 2D with radial symmetry agree with experimental data semi-quantitatively. Finally, we use the PDE model to make a number of testable predictions on how the stripe patterns depend on cell-level parameters, including cell speed, cell doubling time and the turnover rate of intracellular CheZ.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1006178