Repurposing ebselen for decolonization of vancomycin-resistant enterococci (VRE)

Enterococci represent one of the microbial world's most challenging enigmas. Colonization of the gastrointestinal tract (GIT) of high-risk/immunocompromised patients by enterococci exhibiting resistance to vancomycin (VRE) can lead to life-threating infections, including bloodstream infections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-06, Vol.13 (6), p.e0199710-e0199710
Hauptverfasser: AbdelKhalek, Ahmed, Abutaleb, Nader S, Mohammad, Haroon, Seleem, Mohamed N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enterococci represent one of the microbial world's most challenging enigmas. Colonization of the gastrointestinal tract (GIT) of high-risk/immunocompromised patients by enterococci exhibiting resistance to vancomycin (VRE) can lead to life-threating infections, including bloodstream infections and endocarditis. Decolonization of VRE from the GIT of high-risk patients represents an alternative method to suppress the risk of the infection. It could be considered as a preventative measure to protect against VRE infections in high-risk individuals. Though multiple agents (ramoplanin and bacitracin) have been evaluated clinically, no drugs are currently approved for use in VRE decolonization of the GIT. The present study evaluates ebselen, a clinical molecule, for use as a decolonizing agent against VRE. When evaluated against a broad array of enterococcal isolates in vitro, ebselen was found to be as potent as linezolid (minimum inhibitory concentration against 90% of clinical isolates tested was 2 μg/ml). Though VRE has a remarkable ability to develop resistance to antibacterial agents, no resistance to ebselen emerged after a clinical isolate of vancomycin-resistant E. faecium was serially-passaged with ebselen for 14 days. Against VRE biofilm, a virulence factor that enables the bacteria to colonize the gut, ebselen demonstrated the ability to both inhibit biofilm formation and disrupt mature biofilm. Furthermore, in a murine VRE colonization reduction model, ebselen proved as effective as ramoplanin in reducing the bacterial shedding and burden of VRE present in the fecal content (by > 99.99%), cecum, and ileum of mice. Based on the promising results obtained, ebselen warrants further investigation as a novel decolonizing agent to quell VRE infection.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0199710