Predictive modeling for odor character of a chemical using machine learning combined with natural language processing

Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-06, Vol.13 (6), p.e0198475-e0198475
Hauptverfasser: Nozaki, Yuji, Nakamoto, Takamichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0198475
container_issue 6
container_start_page e0198475
container_title PloS one
container_volume 13
creator Nozaki, Yuji
Nakamoto, Takamichi
description Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochemical properties. Our predictive model utilizes nonlinear dimensionality reduction on mass spectra data and performs the clustering of descriptors by natural language processing. Sensory evaluation is widely used to measure human impressions to smell or taste by using verbal descriptors, such as "spicy" and "sweet". However, as it requires significant amounts of time and human resources, a large-scale sensory evaluation test is difficult to perform. Our model successfully predicts a group of descriptors for a target chemical through a series of computer simulations. Although the training text data used in the language modeling is not specialized for olfaction, the experimental results show that our method is useful for analyzing sensory datasets. This is the first report to combine machine olfaction with natural language processing for odor character prediction.
doi_str_mv 10.1371/journal.pone.0198475
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2055611312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543294644</galeid><doaj_id>oai_doaj_org_article_0b01faf30b2247bbb1e66c05f10f684e</doaj_id><sourcerecordid>A543294644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6a06da8049cf425714d698bb2ac6100c14b501c73ea5087819dbe89f518789a13</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLguiLXZM0TZs3wnH4sHBw4tPbME0n3Rxts5e0p35709vesZV7IYW0M_nNP5mZTpI8p2RNs4K-u3Sj76Fd71yPa0JlyYv8QXJMZcZWgpHs4cH3UfIkhEtC8qwU4nFyxKQkjEp-nIxfPNZWD_Ya087V2Nq-SY3zqavjorfgQQ8YTZNCNLGzGtp0DBPWgd7aHtMWwfeTQ7uuio46_WWHbdrDMPoIt9A3IzSY7rzTGKbQp8kjA23AZ_P7JPnx8cP3s8-r84tPm7PT85UWkg0rAUTUUBIuteEsLyivhSyrioEWlBBNeZUTqosMISdlUVJZV1hKk9NoSKDZSfJyr7trXVBzxYJiJM8FpRllkdjsidrBpdp524H_oxxYdeNwvlHgB6tbVKQi1IDJSMUYL6qqoiiEJrmhxIiSY9R6P582Vh3WGvsh5r8QXe70dqsad60EIYyw6TJvZgHvrkYMg-ps0NjGCqIbb-4tMhkbV0T01T_o_dnNVAMxAdsbF8_Vk6g6zXnGJBecR2p9DxWfemp3_L2Mjf5FwNtFQGQG_D00MIagNt--_j978XPJvj5gtwjtsA2uHQfr-rAE-R7U3oXg0dwVmRI1TcdtNdQ0HWqejhj24rBBd0G345D9BWdICn0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055611312</pqid></control><display><type>article</type><title>Predictive modeling for odor character of a chemical using machine learning combined with natural language processing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nozaki, Yuji ; Nakamoto, Takamichi</creator><contributor>Matsunami, Hiroaki</contributor><creatorcontrib>Nozaki, Yuji ; Nakamoto, Takamichi ; Matsunami, Hiroaki</creatorcontrib><description>Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochemical properties. Our predictive model utilizes nonlinear dimensionality reduction on mass spectra data and performs the clustering of descriptors by natural language processing. Sensory evaluation is widely used to measure human impressions to smell or taste by using verbal descriptors, such as "spicy" and "sweet". However, as it requires significant amounts of time and human resources, a large-scale sensory evaluation test is difficult to perform. Our model successfully predicts a group of descriptors for a target chemical through a series of computer simulations. Although the training text data used in the language modeling is not specialized for olfaction, the experimental results show that our method is useful for analyzing sensory datasets. This is the first report to combine machine olfaction with natural language processing for odor character prediction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0198475</identifier><identifier>PMID: 29902194</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Auditory tasks ; Biology and Life Sciences ; Chemicals ; Chemistry ; Clustering ; Computer and Information Sciences ; Computer applications ; Computer simulation ; Databases, Chemical ; Datasets ; Human resources ; Humans ; Information processing ; Language ; Learning algorithms ; Machine Learning ; Mass spectra ; Mathematical models ; Models, Theoretical ; Natural Language Processing ; Neural networks ; Odor ; Odorants ; Odors ; Olfaction ; Organic chemistry ; Physical Sciences ; Physicochemical properties ; Prediction models ; Research and Analysis Methods ; Sensory evaluation ; Sensory integration ; Smell ; Smell - physiology ; Social Sciences ; Sweet taste ; Taste ; Visual tasks</subject><ispartof>PloS one, 2018-06, Vol.13 (6), p.e0198475-e0198475</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Nozaki, Nakamoto. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Nozaki, Nakamoto 2018 Nozaki, Nakamoto</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6a06da8049cf425714d698bb2ac6100c14b501c73ea5087819dbe89f518789a13</citedby><cites>FETCH-LOGICAL-c692t-6a06da8049cf425714d698bb2ac6100c14b501c73ea5087819dbe89f518789a13</cites><orcidid>0000-0002-0599-226X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002022/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002022/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29902194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Matsunami, Hiroaki</contributor><creatorcontrib>Nozaki, Yuji</creatorcontrib><creatorcontrib>Nakamoto, Takamichi</creatorcontrib><title>Predictive modeling for odor character of a chemical using machine learning combined with natural language processing</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochemical properties. Our predictive model utilizes nonlinear dimensionality reduction on mass spectra data and performs the clustering of descriptors by natural language processing. Sensory evaluation is widely used to measure human impressions to smell or taste by using verbal descriptors, such as "spicy" and "sweet". However, as it requires significant amounts of time and human resources, a large-scale sensory evaluation test is difficult to perform. Our model successfully predicts a group of descriptors for a target chemical through a series of computer simulations. Although the training text data used in the language modeling is not specialized for olfaction, the experimental results show that our method is useful for analyzing sensory datasets. This is the first report to combine machine olfaction with natural language processing for odor character prediction.</description><subject>Analysis</subject><subject>Auditory tasks</subject><subject>Biology and Life Sciences</subject><subject>Chemicals</subject><subject>Chemistry</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Databases, Chemical</subject><subject>Datasets</subject><subject>Human resources</subject><subject>Humans</subject><subject>Information processing</subject><subject>Language</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mass spectra</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Natural Language Processing</subject><subject>Neural networks</subject><subject>Odor</subject><subject>Odorants</subject><subject>Odors</subject><subject>Olfaction</subject><subject>Organic chemistry</subject><subject>Physical Sciences</subject><subject>Physicochemical properties</subject><subject>Prediction models</subject><subject>Research and Analysis Methods</subject><subject>Sensory evaluation</subject><subject>Sensory integration</subject><subject>Smell</subject><subject>Smell - physiology</subject><subject>Social Sciences</subject><subject>Sweet taste</subject><subject>Taste</subject><subject>Visual tasks</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLguiLXZM0TZs3wnH4sHBw4tPbME0n3Rxts5e0p35709vesZV7IYW0M_nNP5mZTpI8p2RNs4K-u3Sj76Fd71yPa0JlyYv8QXJMZcZWgpHs4cH3UfIkhEtC8qwU4nFyxKQkjEp-nIxfPNZWD_Ya087V2Nq-SY3zqavjorfgQQ8YTZNCNLGzGtp0DBPWgd7aHtMWwfeTQ7uuio46_WWHbdrDMPoIt9A3IzSY7rzTGKbQp8kjA23AZ_P7JPnx8cP3s8-r84tPm7PT85UWkg0rAUTUUBIuteEsLyivhSyrioEWlBBNeZUTqosMISdlUVJZV1hKk9NoSKDZSfJyr7trXVBzxYJiJM8FpRllkdjsidrBpdp524H_oxxYdeNwvlHgB6tbVKQi1IDJSMUYL6qqoiiEJrmhxIiSY9R6P582Vh3WGvsh5r8QXe70dqsad60EIYyw6TJvZgHvrkYMg-ps0NjGCqIbb-4tMhkbV0T01T_o_dnNVAMxAdsbF8_Vk6g6zXnGJBecR2p9DxWfemp3_L2Mjf5FwNtFQGQG_D00MIagNt--_j978XPJvj5gtwjtsA2uHQfr-rAE-R7U3oXg0dwVmRI1TcdtNdQ0HWqejhj24rBBd0G345D9BWdICn0</recordid><startdate>20180614</startdate><enddate>20180614</enddate><creator>Nozaki, Yuji</creator><creator>Nakamoto, Takamichi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0599-226X</orcidid></search><sort><creationdate>20180614</creationdate><title>Predictive modeling for odor character of a chemical using machine learning combined with natural language processing</title><author>Nozaki, Yuji ; Nakamoto, Takamichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6a06da8049cf425714d698bb2ac6100c14b501c73ea5087819dbe89f518789a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Auditory tasks</topic><topic>Biology and Life Sciences</topic><topic>Chemicals</topic><topic>Chemistry</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Databases, Chemical</topic><topic>Datasets</topic><topic>Human resources</topic><topic>Humans</topic><topic>Information processing</topic><topic>Language</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mass spectra</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Natural Language Processing</topic><topic>Neural networks</topic><topic>Odor</topic><topic>Odorants</topic><topic>Odors</topic><topic>Olfaction</topic><topic>Organic chemistry</topic><topic>Physical Sciences</topic><topic>Physicochemical properties</topic><topic>Prediction models</topic><topic>Research and Analysis Methods</topic><topic>Sensory evaluation</topic><topic>Sensory integration</topic><topic>Smell</topic><topic>Smell - physiology</topic><topic>Social Sciences</topic><topic>Sweet taste</topic><topic>Taste</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nozaki, Yuji</creatorcontrib><creatorcontrib>Nakamoto, Takamichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozaki, Yuji</au><au>Nakamoto, Takamichi</au><au>Matsunami, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling for odor character of a chemical using machine learning combined with natural language processing</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-06-14</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>e0198475</spage><epage>e0198475</epage><pages>e0198475-e0198475</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochemical properties. Our predictive model utilizes nonlinear dimensionality reduction on mass spectra data and performs the clustering of descriptors by natural language processing. Sensory evaluation is widely used to measure human impressions to smell or taste by using verbal descriptors, such as "spicy" and "sweet". However, as it requires significant amounts of time and human resources, a large-scale sensory evaluation test is difficult to perform. Our model successfully predicts a group of descriptors for a target chemical through a series of computer simulations. Although the training text data used in the language modeling is not specialized for olfaction, the experimental results show that our method is useful for analyzing sensory datasets. This is the first report to combine machine olfaction with natural language processing for odor character prediction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29902194</pmid><doi>10.1371/journal.pone.0198475</doi><tpages>e0198475</tpages><orcidid>https://orcid.org/0000-0002-0599-226X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-06, Vol.13 (6), p.e0198475-e0198475
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2055611312
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Auditory tasks
Biology and Life Sciences
Chemicals
Chemistry
Clustering
Computer and Information Sciences
Computer applications
Computer simulation
Databases, Chemical
Datasets
Human resources
Humans
Information processing
Language
Learning algorithms
Machine Learning
Mass spectra
Mathematical models
Models, Theoretical
Natural Language Processing
Neural networks
Odor
Odorants
Odors
Olfaction
Organic chemistry
Physical Sciences
Physicochemical properties
Prediction models
Research and Analysis Methods
Sensory evaluation
Sensory integration
Smell
Smell - physiology
Social Sciences
Sweet taste
Taste
Visual tasks
title Predictive modeling for odor character of a chemical using machine learning combined with natural language processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20for%20odor%20character%20of%20a%20chemical%20using%20machine%20learning%20combined%20with%20natural%20language%20processing&rft.jtitle=PloS%20one&rft.au=Nozaki,%20Yuji&rft.date=2018-06-14&rft.volume=13&rft.issue=6&rft.spage=e0198475&rft.epage=e0198475&rft.pages=e0198475-e0198475&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0198475&rft_dat=%3Cgale_plos_%3EA543294644%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055611312&rft_id=info:pmid/29902194&rft_galeid=A543294644&rft_doaj_id=oai_doaj_org_article_0b01faf30b2247bbb1e66c05f10f684e&rfr_iscdi=true