Predictive modeling for odor character of a chemical using machine learning combined with natural language processing
Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochem...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-06, Vol.13 (6), p.e0198475-e0198475 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochemical properties. Our predictive model utilizes nonlinear dimensionality reduction on mass spectra data and performs the clustering of descriptors by natural language processing. Sensory evaluation is widely used to measure human impressions to smell or taste by using verbal descriptors, such as "spicy" and "sweet". However, as it requires significant amounts of time and human resources, a large-scale sensory evaluation test is difficult to perform. Our model successfully predicts a group of descriptors for a target chemical through a series of computer simulations. Although the training text data used in the language modeling is not specialized for olfaction, the experimental results show that our method is useful for analyzing sensory datasets. This is the first report to combine machine olfaction with natural language processing for odor character prediction. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0198475 |