Role of heme in lung bacterial infection after trauma hemorrhage and stored red blood cell transfusion: A preclinical experimental study

Trauma is the leading cause of death and disability in patients aged 1-46 y. Severely injured patients experience considerable blood loss and hemorrhagic shock requiring treatment with massive transfusion of red blood cells (RBCs). Preclinical and retrospective human studies in trauma patients have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS medicine 2018-03, Vol.15 (3), p.e1002522-e1002522
Hauptverfasser: Wagener, Brant M, Hu, Parker J, Oh, Joo-Yeun, Evans, Cilina A, Richter, Jillian R, Honavar, Jaideep, Brandon, Angela P, Creighton, Judy, Stephens, Shannon W, Morgan, Charity, Dull, Randal O, Marques, Marisa B, Kerby, Jeffrey D, Pittet, Jean-Francois, Patel, Rakesh P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trauma is the leading cause of death and disability in patients aged 1-46 y. Severely injured patients experience considerable blood loss and hemorrhagic shock requiring treatment with massive transfusion of red blood cells (RBCs). Preclinical and retrospective human studies in trauma patients have suggested that poorer therapeutic efficacy, increased severity of organ injury, and increased bacterial infection are associated with transfusion of large volumes of stored RBCs, although the mechanisms are not fully understood. We developed a murine model of trauma hemorrhage (TH) followed by resuscitation with plasma and leukoreduced RBCs (in a 1:1 ratio) that were banked for 0 (fresh) or 14 (stored) days. Two days later, lungs were infected with Pseudomonas aeruginosa K-strain (PAK). Resuscitation with stored RBCs significantly increased the severity of lung injury caused by P. aeruginosa, as demonstrated by higher mortality (median survival 35 h for fresh RBC group and 8 h for stored RBC group; p < 0.001), increased pulmonary edema (mean [95% CI] 106.4 μl [88.5-124.3] for fresh RBCs and 192.5 μl [140.9-244.0] for stored RBCs; p = 0.003), and higher bacterial numbers in the lung (mean [95% CI] 1.2 × 10(7) [-1.0 × 10(7) to 2.5 × 10(7)] for fresh RBCs and 3.6 × 10(7) [2.5 × 10(7) to 4.7 × 10(7)] for stored RBCs; p = 0.014). The mechanism underlying this increased infection susceptibility and severity was free-heme-dependent, as recombinant hemopexin or pharmacological inhibition or genetic deletion of toll-like receptor 4 (TLR4) during TH and resuscitation completely prevented P. aeruginosa-induced mortality after stored RBC transfusion (p < 0.001 for all groups relative to stored RBC group). Evidence from studies transfusing fresh and stored RBCs mixed with stored and fresh RBC supernatants, respectively, indicated that heme arising both during storage and from RBC hemolysis post-resuscitation plays a role in increased mortality after PAK (p < 0.001). Heme also increased endothelial permeability and inhibited macrophage-dependent phagocytosis in cultured cells. Stored RBCs also increased circulating high mobility group box 1 (HMGB1; mean [95% CI] 15.4 ng/ml [6.7-24.0] for fresh RBCs and 50.3 ng/ml [12.3-88.2] for stored RBCs), and anti-HMGB1 blocking antibody protected against PAK-induced mortality in vivo (p = 0.001) and restored macrophage-dependent phagocytosis of P. aeruginosa in vitro. Finally, we showed that TH patients, admitted to the University of Ala
ISSN:1549-1676
1549-1277
1549-1676
DOI:10.1371/journal.pmed.1002522