Loss of cytotoxicity and gain of cytokine production in murine tumor-activated NK cells
NK cells are able to form a functional memory suggesting that some NK cells are surviving the activation process. We hypothesized that NK cell activation causes the development of a distinct NK cell subset and studied the fate of murine post-activation NK cells. Activation was achieved by in vivo an...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-08, Vol.9 (8), p.e102793 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NK cells are able to form a functional memory suggesting that some NK cells are surviving the activation process. We hypothesized that NK cell activation causes the development of a distinct NK cell subset and studied the fate of murine post-activation NK cells. Activation was achieved by in vivo and in vitro exposures to the melanoma tumor cell line B16 that was followed by differentiation in IL-2. When compared with control NK cells, post-activation CD25(+) NK cells expressed little granzyme B or perforin and had low lysis activity. Post-activation NK cells expressed CD27, CD90, CD127, and were low for CD11b suggesting that tumor-induced activation is restricted to an early NK cell subset. Activation of NK cells led to decreases of CD16, CD11c and increases of CD62L and the IL-18 receptor. In vivo activated but not control NK cells expressed a variety of cytokines that included IFNγ, TNFα, GM-CSF and IL-10. These data suggest that the exposure of a subset of peripheral NK cells to the B16 tumor environment caused an exhaustion of their cytolytic capacity but also a gain in their ability to produce cytokines. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0102793 |