Cloning and expression analysis of the DEAD-box/RNA helicase Oslaf-1 in Ovomermis sinensis

Ovomermis sinensis is a potentially-valuable nematode for controlling insect pests. The parasitic stage of the nematode absorbs nutrients in its host's hemolymph to maintain its growth development and then kills the host when it emerges. At present, little known about its reproductive developme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-02, Vol.13 (2), p.e0192101-e0192101
Hauptverfasser: Tao, Siying, Jiao, Zhenlong, Wen, Guigui, Zhang, Lihong, Wang, Guoxiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ovomermis sinensis is a potentially-valuable nematode for controlling insect pests. The parasitic stage of the nematode absorbs nutrients in its host's hemolymph to maintain its growth development and then kills the host when it emerges. At present, little known about its reproductive development, particularly the responsible molecular mechanism. More detailed research on the genes of reproductive development will not only help us understand the mechanisms underlying sex differentiation in the nematode, but would also be valuable for successfully cultivating them in vitro and using them for biocontrol. In this study, we used the homology cloning method to clone the full-length cDNA of a DEAD-box family gene (Oslaf-1) from O. sinensis. Then, using qRT-PCR technology to detect the expression pattern of the Oslaf-1 gene at different development stages and tissues, the gene was found to be highly expressed in the post-parasitic stage (P < 0.01) and ovarian (P < 0.05) of O. sinensis. Western blot analysis showed the same result that the gene is associated with gonadal development and function, but is not gonad-specific. In situ hybridization further demonstrated that the gene is widely expressed in early embryos and is mainly distributed in the gonadal area. However, the signal was mainly concentrated in the reproductive primordia in pre-parasitic juveniles. RNA interference (RNAi) studies revealed that the sex ratio of O. sinensis soaked in dsRNA of Oslaf-1 was not statistically different than the gfp dsRNA treated groups. Our results suggest that Oslaf-1 may play a vital role in the reproductive systems of the nematode. In addition, we speculate that the Oslaf-1 gene plays an important role during embryonic development and that it occurs and develops in the gonads of pre-parasitic juveniles of O. sinensis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0192101