Molecular mechanism of inhibitory effects of bovine lactoferrin on the growth of oral squamous cell carcinoma

Lactoferrin (LF), a member of the transferrin family, recently has been demonstrated to have anticancer effects on various cancers including oral squamous cell carcinoma (OSCC). However, little is known about the underlying mechanisms of its effects on OSCC. Therefore, we aimed to investigate the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-01, Vol.13 (1), p.e0191683-e0191683
Hauptverfasser: Chea, Chanbora, Miyauchi, Mutsumi, Inubushi, Toshihiro, Febriyanti Ayuningtyas, Nurina, Subarnbhesaj, Ajiravudh, Nguyen, Phuong Thao, Shrestha, Madhu, Haing, Sivmeng, Ohta, Kouji, Takata, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lactoferrin (LF), a member of the transferrin family, recently has been demonstrated to have anticancer effects on various cancers including oral squamous cell carcinoma (OSCC). However, little is known about the underlying mechanisms of its effects on OSCC. Therefore, we aimed to investigate the mechanism of the suppressive effects of bovine LF (bLF) on the growth of OSCC cells. In the current study, HSC2, HSC3, HSC4 and normal human oral keratinocytes (RT7) cell lines were tested with bLF 1, 10, and 100 μg/ml. The effects and detail mechanisms of bLF on proliferation and apoptosis of cells were investigated using flow cytometry and western blotting. We found that bLF (1, 10, and 100 μg/ml) induced activation of p53, a tumor suppressor gene, is associated with the induction of cell cycle arrest in G1/S phase and apoptosis in OSCC. Moreover, bLF downregulated the phosphorylation of Akt and activated suppressor of cytokine signaling 3 (SOCS3), thereby attenuating multiple signaling pathways including mTOR/S6K and JAK/STAT3. Interestingly, we revealed that bLF exerted its effect selectively against HSC3 but not on RT7 via different effects on the phosphorylation status of NF-κB and Akt. This is the first report showing that bLF selectively suppresses proliferation through mTOR/S6K and JAK/STAT3 pathways and induction of apoptosis in OSCC. This study provides important new findings, which might be useful in the prevention and treatment of OSCC.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0191683