Estimating optimal sparseness of developmental gene networks using a semi-quantitative model

To estimate gene regulatory networks, it is important that we know the number of connections, or sparseness of the networks. It can be expected that the robustness to perturbations is one of the factors determining the sparseness. We reconstruct a semi-quantitative model of gene networks from gene e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0176492-e0176492
Hauptverfasser: Ichinose, Natsuhiro, Yada, Tetsushi, Wada, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To estimate gene regulatory networks, it is important that we know the number of connections, or sparseness of the networks. It can be expected that the robustness to perturbations is one of the factors determining the sparseness. We reconstruct a semi-quantitative model of gene networks from gene expression data in embryonic development and detect the optimal sparseness against perturbations. The dense networks are robust to connection-removal perturbation, whereas the sparse networks are robust to misexpression perturbation. We show that there is an optimal sparseness that serves as a trade-off between these perturbations, in agreement with the optimal result of validation for testing data. These results suggest that the robustness to the two types of perturbations determines the sparseness of gene networks.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0176492