Mechanisms of Intestinal Serotonin Transporter (SERT) Upregulation by TGF-β1 Induced Non-Smad Pathways
TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT) activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT), is not known. Current studies were designed t...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-05, Vol.10 (5), p.e0120447-e0120447 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0120447 |
---|---|
container_issue | 5 |
container_start_page | e0120447 |
container_title | PloS one |
container_volume | 10 |
creator | Nazir, Saad Kumar, Anoop Chatterjee, Ishita Anbazhagan, Arivarasu N Gujral, Tarunmeet Priyamvada, Shubha Saksena, Seema Alrefai, Waddah A Dudeja, Pradeep K Gill, Ravinder K |
description | TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT) activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT), is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer's or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min) stimulated SERT activity (~2 fold, P |
doi_str_mv | 10.1371/journal.pone.0120447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1982585145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12782c60cbba4f8a833f48afd21e1251</doaj_id><sourcerecordid>1680211611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5077-516eb14332034a97f0d3a7efafb378e25a5c1f8460587ce71eb63460d370ecee3</originalsourceid><addsrcrecordid>eNptUttuEzEQXSEQvcAfIFiJl_KwwXc7L0ioakukchFJn61Z72yy0cYO9i4ov9UP4ZvYkG3VIp5sj885c2Z0suwVJRPKNX2_Dn300E62weOEUEaE0E-yYzrlrFCM8KcP7kfZSUprQiQ3Sj3PjpicSjHl9Dhbfka3At-kTcpDnc98h6lrBt18jjF0wTc-X0TwaRtihzE_m198X7zLb7YRl30LXRN8Xu7yxdVl8fuWDvyqd1jlX4Iv5huo8m_QrX7BLr3IntXQJnw5nqfZzeXF4vxTcf31anb-8bpwkmhdSKqwpILzwbSAqa5JxUFjDXXJtUEmQTpaG6GINNqhplgqPrwqrgk6RH6avTnobtuQ7LijZOnUMGkkFXJAzA6IKsDabmOzgbizARr7txDi0kLsGteipUwb5hRxZQmiNmA4r4WBumIUKZN00PowduvLDVYOfRehfST6-Mc3K7sMP60QTCqlBoGzUSCGH_2wertpksO2BY-hH3wrQxiliu57vf0H-v_pxAHlYkgpYn1vhhK7z80dy-5zY8fcDLTXDwe5J90Fhf8BVozA_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982585145</pqid></control><display><type>article</type><title>Mechanisms of Intestinal Serotonin Transporter (SERT) Upregulation by TGF-β1 Induced Non-Smad Pathways</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nazir, Saad ; Kumar, Anoop ; Chatterjee, Ishita ; Anbazhagan, Arivarasu N ; Gujral, Tarunmeet ; Priyamvada, Shubha ; Saksena, Seema ; Alrefai, Waddah A ; Dudeja, Pradeep K ; Gill, Ravinder K</creator><contributor>Dahiya, Rajvir</contributor><creatorcontrib>Nazir, Saad ; Kumar, Anoop ; Chatterjee, Ishita ; Anbazhagan, Arivarasu N ; Gujral, Tarunmeet ; Priyamvada, Shubha ; Saksena, Seema ; Alrefai, Waddah A ; Dudeja, Pradeep K ; Gill, Ravinder K ; Dahiya, Rajvir</creatorcontrib><description>TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT) activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT), is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer's or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min) stimulated SERT activity (~2 fold, P<0.005). This stimulation of SERT function was dependent upon activation of TGF-β1 receptor (TGFRI) as SB-431542, a specific TGF-βRI inhibitor blocked the SERT stimulation. SERT activation in response to TGF-β1 was attenuated by inhibition of PI3K and occurred via enhanced recruitment of SERT-GFP to apical surface in a PI3K dependent manner. The exocytosis inhibitor brefeldin A (2.5 μM) attenuated the TGF-β1-mediated increase in SERT function. TGF-β1 increased the association of SERT with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 3 (STX3) and promoted exocytosis of SERT. Caco-2 cells grown as cysts in 3D culture recapitulated the effects of TGF-β1 showing increased luminal staining of SERT. Ussing chamber studies revealed increase in 3H-5-HT uptake in mouse ileum treated ex vivo with TGF-β1 (10 ng/ml, 1h). These data demonstrate a novel mechanism rapidly regulating intestinal SERT via PI3K and STX3. Since decreased SERT is implicated in various gastro-intestinal disorders e.g IBD, IBS and diarrhea, understanding mechanisms stimulating SERT function by TGF-β1 offers a novel therapeutic strategy to treat GI disorders.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0120447</identifier><identifier>PMID: 25954931</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; Activation ; Acute effects ; Animals ; Brefeldin A ; Caco-2 Cells ; Cell culture ; Cysts ; Diarrhea ; Disorders ; Epidermal growth factor ; Exocytosis ; Gastroenterology ; Hepatology ; Humans ; Ileum ; Inflammation ; Inflammatory bowel disease ; Inhibitors ; Intestinal Mucosa - metabolism ; Intestine ; Kinases ; Medicine ; Mice, Inbred C57BL ; Mucosa ; N-Ethylmaleimide-sensitive protein ; Phosphatidylinositol 3-Kinases - metabolism ; Physiology ; Protein Interaction Maps ; Protein Transport ; Proteins ; Qa-SNARE Proteins - metabolism ; Receptors, Transforming Growth Factor beta - metabolism ; Rodents ; Serotonin ; Serotonin - metabolism ; Serotonin Plasma Membrane Transport Proteins - genetics ; Serotonin Plasma Membrane Transport Proteins - metabolism ; Serotonin transporter ; Signal Transduction ; Smad protein ; SNAP receptors ; Stimulation ; Studies ; Syntaxin ; Three dimensional models ; Transfection ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-b1 ; Up-Regulation</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0120447-e0120447</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5077-516eb14332034a97f0d3a7efafb378e25a5c1f8460587ce71eb63460d370ecee3</citedby><cites>FETCH-LOGICAL-c5077-516eb14332034a97f0d3a7efafb378e25a5c1f8460587ce71eb63460d370ecee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425666/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425666/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25954931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dahiya, Rajvir</contributor><creatorcontrib>Nazir, Saad</creatorcontrib><creatorcontrib>Kumar, Anoop</creatorcontrib><creatorcontrib>Chatterjee, Ishita</creatorcontrib><creatorcontrib>Anbazhagan, Arivarasu N</creatorcontrib><creatorcontrib>Gujral, Tarunmeet</creatorcontrib><creatorcontrib>Priyamvada, Shubha</creatorcontrib><creatorcontrib>Saksena, Seema</creatorcontrib><creatorcontrib>Alrefai, Waddah A</creatorcontrib><creatorcontrib>Dudeja, Pradeep K</creatorcontrib><creatorcontrib>Gill, Ravinder K</creatorcontrib><title>Mechanisms of Intestinal Serotonin Transporter (SERT) Upregulation by TGF-β1 Induced Non-Smad Pathways</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT) activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT), is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer's or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min) stimulated SERT activity (~2 fold, P<0.005). This stimulation of SERT function was dependent upon activation of TGF-β1 receptor (TGFRI) as SB-431542, a specific TGF-βRI inhibitor blocked the SERT stimulation. SERT activation in response to TGF-β1 was attenuated by inhibition of PI3K and occurred via enhanced recruitment of SERT-GFP to apical surface in a PI3K dependent manner. The exocytosis inhibitor brefeldin A (2.5 μM) attenuated the TGF-β1-mediated increase in SERT function. TGF-β1 increased the association of SERT with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 3 (STX3) and promoted exocytosis of SERT. Caco-2 cells grown as cysts in 3D culture recapitulated the effects of TGF-β1 showing increased luminal staining of SERT. Ussing chamber studies revealed increase in 3H-5-HT uptake in mouse ileum treated ex vivo with TGF-β1 (10 ng/ml, 1h). These data demonstrate a novel mechanism rapidly regulating intestinal SERT via PI3K and STX3. Since decreased SERT is implicated in various gastro-intestinal disorders e.g IBD, IBS and diarrhea, understanding mechanisms stimulating SERT function by TGF-β1 offers a novel therapeutic strategy to treat GI disorders.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Activation</subject><subject>Acute effects</subject><subject>Animals</subject><subject>Brefeldin A</subject><subject>Caco-2 Cells</subject><subject>Cell culture</subject><subject>Cysts</subject><subject>Diarrhea</subject><subject>Disorders</subject><subject>Epidermal growth factor</subject><subject>Exocytosis</subject><subject>Gastroenterology</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Ileum</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Inhibitors</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Mice, Inbred C57BL</subject><subject>Mucosa</subject><subject>N-Ethylmaleimide-sensitive protein</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Physiology</subject><subject>Protein Interaction Maps</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Qa-SNARE Proteins - metabolism</subject><subject>Receptors, Transforming Growth Factor beta - metabolism</subject><subject>Rodents</subject><subject>Serotonin</subject><subject>Serotonin - metabolism</subject><subject>Serotonin Plasma Membrane Transport Proteins - genetics</subject><subject>Serotonin Plasma Membrane Transport Proteins - metabolism</subject><subject>Serotonin transporter</subject><subject>Signal Transduction</subject><subject>Smad protein</subject><subject>SNAP receptors</subject><subject>Stimulation</subject><subject>Studies</subject><subject>Syntaxin</subject><subject>Three dimensional models</subject><subject>Transfection</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-b1</subject><subject>Up-Regulation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUttuEzEQXSEQvcAfIFiJl_KwwXc7L0ioakukchFJn61Z72yy0cYO9i4ov9UP4ZvYkG3VIp5sj885c2Z0suwVJRPKNX2_Dn300E62weOEUEaE0E-yYzrlrFCM8KcP7kfZSUprQiQ3Sj3PjpicSjHl9Dhbfka3At-kTcpDnc98h6lrBt18jjF0wTc-X0TwaRtihzE_m198X7zLb7YRl30LXRN8Xu7yxdVl8fuWDvyqd1jlX4Iv5huo8m_QrX7BLr3IntXQJnw5nqfZzeXF4vxTcf31anb-8bpwkmhdSKqwpILzwbSAqa5JxUFjDXXJtUEmQTpaG6GINNqhplgqPrwqrgk6RH6avTnobtuQ7LijZOnUMGkkFXJAzA6IKsDabmOzgbizARr7txDi0kLsGteipUwb5hRxZQmiNmA4r4WBumIUKZN00PowduvLDVYOfRehfST6-Mc3K7sMP60QTCqlBoGzUSCGH_2wertpksO2BY-hH3wrQxiliu57vf0H-v_pxAHlYkgpYn1vhhK7z80dy-5zY8fcDLTXDwe5J90Fhf8BVozA_g</recordid><startdate>20150508</startdate><enddate>20150508</enddate><creator>Nazir, Saad</creator><creator>Kumar, Anoop</creator><creator>Chatterjee, Ishita</creator><creator>Anbazhagan, Arivarasu N</creator><creator>Gujral, Tarunmeet</creator><creator>Priyamvada, Shubha</creator><creator>Saksena, Seema</creator><creator>Alrefai, Waddah A</creator><creator>Dudeja, Pradeep K</creator><creator>Gill, Ravinder K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150508</creationdate><title>Mechanisms of Intestinal Serotonin Transporter (SERT) Upregulation by TGF-β1 Induced Non-Smad Pathways</title><author>Nazir, Saad ; Kumar, Anoop ; Chatterjee, Ishita ; Anbazhagan, Arivarasu N ; Gujral, Tarunmeet ; Priyamvada, Shubha ; Saksena, Seema ; Alrefai, Waddah A ; Dudeja, Pradeep K ; Gill, Ravinder K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5077-516eb14332034a97f0d3a7efafb378e25a5c1f8460587ce71eb63460d370ecee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Activation</topic><topic>Acute effects</topic><topic>Animals</topic><topic>Brefeldin A</topic><topic>Caco-2 Cells</topic><topic>Cell culture</topic><topic>Cysts</topic><topic>Diarrhea</topic><topic>Disorders</topic><topic>Epidermal growth factor</topic><topic>Exocytosis</topic><topic>Gastroenterology</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Ileum</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Inhibitors</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Mice, Inbred C57BL</topic><topic>Mucosa</topic><topic>N-Ethylmaleimide-sensitive protein</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Physiology</topic><topic>Protein Interaction Maps</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Qa-SNARE Proteins - metabolism</topic><topic>Receptors, Transforming Growth Factor beta - metabolism</topic><topic>Rodents</topic><topic>Serotonin</topic><topic>Serotonin - metabolism</topic><topic>Serotonin Plasma Membrane Transport Proteins - genetics</topic><topic>Serotonin Plasma Membrane Transport Proteins - metabolism</topic><topic>Serotonin transporter</topic><topic>Signal Transduction</topic><topic>Smad protein</topic><topic>SNAP receptors</topic><topic>Stimulation</topic><topic>Studies</topic><topic>Syntaxin</topic><topic>Three dimensional models</topic><topic>Transfection</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-b1</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazir, Saad</creatorcontrib><creatorcontrib>Kumar, Anoop</creatorcontrib><creatorcontrib>Chatterjee, Ishita</creatorcontrib><creatorcontrib>Anbazhagan, Arivarasu N</creatorcontrib><creatorcontrib>Gujral, Tarunmeet</creatorcontrib><creatorcontrib>Priyamvada, Shubha</creatorcontrib><creatorcontrib>Saksena, Seema</creatorcontrib><creatorcontrib>Alrefai, Waddah A</creatorcontrib><creatorcontrib>Dudeja, Pradeep K</creatorcontrib><creatorcontrib>Gill, Ravinder K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazir, Saad</au><au>Kumar, Anoop</au><au>Chatterjee, Ishita</au><au>Anbazhagan, Arivarasu N</au><au>Gujral, Tarunmeet</au><au>Priyamvada, Shubha</au><au>Saksena, Seema</au><au>Alrefai, Waddah A</au><au>Dudeja, Pradeep K</au><au>Gill, Ravinder K</au><au>Dahiya, Rajvir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Intestinal Serotonin Transporter (SERT) Upregulation by TGF-β1 Induced Non-Smad Pathways</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-08</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0120447</spage><epage>e0120447</epage><pages>e0120447-e0120447</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT) activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT), is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer's or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min) stimulated SERT activity (~2 fold, P<0.005). This stimulation of SERT function was dependent upon activation of TGF-β1 receptor (TGFRI) as SB-431542, a specific TGF-βRI inhibitor blocked the SERT stimulation. SERT activation in response to TGF-β1 was attenuated by inhibition of PI3K and occurred via enhanced recruitment of SERT-GFP to apical surface in a PI3K dependent manner. The exocytosis inhibitor brefeldin A (2.5 μM) attenuated the TGF-β1-mediated increase in SERT function. TGF-β1 increased the association of SERT with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 3 (STX3) and promoted exocytosis of SERT. Caco-2 cells grown as cysts in 3D culture recapitulated the effects of TGF-β1 showing increased luminal staining of SERT. Ussing chamber studies revealed increase in 3H-5-HT uptake in mouse ileum treated ex vivo with TGF-β1 (10 ng/ml, 1h). These data demonstrate a novel mechanism rapidly regulating intestinal SERT via PI3K and STX3. Since decreased SERT is implicated in various gastro-intestinal disorders e.g IBD, IBS and diarrhea, understanding mechanisms stimulating SERT function by TGF-β1 offers a novel therapeutic strategy to treat GI disorders.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25954931</pmid><doi>10.1371/journal.pone.0120447</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-05, Vol.10 (5), p.e0120447-e0120447 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1982585145 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 1-Phosphatidylinositol 3-kinase Activation Acute effects Animals Brefeldin A Caco-2 Cells Cell culture Cysts Diarrhea Disorders Epidermal growth factor Exocytosis Gastroenterology Hepatology Humans Ileum Inflammation Inflammatory bowel disease Inhibitors Intestinal Mucosa - metabolism Intestine Kinases Medicine Mice, Inbred C57BL Mucosa N-Ethylmaleimide-sensitive protein Phosphatidylinositol 3-Kinases - metabolism Physiology Protein Interaction Maps Protein Transport Proteins Qa-SNARE Proteins - metabolism Receptors, Transforming Growth Factor beta - metabolism Rodents Serotonin Serotonin - metabolism Serotonin Plasma Membrane Transport Proteins - genetics Serotonin Plasma Membrane Transport Proteins - metabolism Serotonin transporter Signal Transduction Smad protein SNAP receptors Stimulation Studies Syntaxin Three dimensional models Transfection Transforming Growth Factor beta1 - metabolism Transforming growth factor-b1 Up-Regulation |
title | Mechanisms of Intestinal Serotonin Transporter (SERT) Upregulation by TGF-β1 Induced Non-Smad Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Intestinal%20Serotonin%20Transporter%20(SERT)%20Upregulation%20by%20TGF-%CE%B21%20Induced%20Non-Smad%20Pathways&rft.jtitle=PloS%20one&rft.au=Nazir,%20Saad&rft.date=2015-05-08&rft.volume=10&rft.issue=5&rft.spage=e0120447&rft.epage=e0120447&rft.pages=e0120447-e0120447&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0120447&rft_dat=%3Cproquest_plos_%3E1680211611%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982585145&rft_id=info:pmid/25954931&rft_doaj_id=oai_doaj_org_article_12782c60cbba4f8a833f48afd21e1251&rfr_iscdi=true |