Identification of transcription factor genes and their correlation with the high diversity of stramenopiles
The biological diversity among Stramenopiles is striking; they range from large multicellular seaweeds to tiny unicellular species, they embrace many ecologically important autothrophic (e.g., diatoms, brown algae), and heterotrophic (e.g., oomycetes) groups. Transcription factors (TFs) and other tr...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-11, Vol.9 (11), p.e111841-e111841 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The biological diversity among Stramenopiles is striking; they range from large multicellular seaweeds to tiny unicellular species, they embrace many ecologically important autothrophic (e.g., diatoms, brown algae), and heterotrophic (e.g., oomycetes) groups. Transcription factors (TFs) and other transcription regulators (TRs) regulate spatial and temporal gene expression. A plethora of transcriptional regulatory proteins have been identified and classified into families on the basis of sequence similarity. The purpose of this work is to identify the TF and TR complement in diverse species belonging to Stramenopiles in order to understand how these regulators may contribute to their observed diversity. We identified and classified 63 TF and TR families in 11 species of Stramenopiles. In some species we found gene families with high relative importance. Taking into account the 63 TF and TR families identified, 28 TF and TR families were established to be positively correlated with specific traits like number of predicted proteins, number of flagella and number of cell types during the life cycle. Additionally, we found gains and losses in TF and TR families specific to some species and clades, as well as, two families with high abundance specific to the autotrophic species and three families with high abundance specific to the heterotropic species. For the first time, there is a systematic search of TF and TR families in Stramenopiles. The attempts to uncover relationships between these families and the complexity of this group may be of great impact, considering that there are several important pathogens of plants and animals, as well as, important species involved in carbon cycling. Specific TF and TR families identified in this work appear to be correlated with particular traits in the Stramenopiles group and may be correlated with the high complexity and diversity in Stramenopiles. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0111841 |